Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891675916> ?p ?o ?g. }
- W2891675916 endingPage "4546" @default.
- W2891675916 startingPage "4519" @default.
- W2891675916 abstract "The variations in Manufacturing Strategy (MS) definitions create confusion and lead to lack of shared understanding between academic researchers and practitioners on its scope. The purpose of this study is to provide an empirical analysis of the paradox in the difference between academic and industry definitions of MS. Natural Language Processing (NLP) based text mining is used to extract primary elements from the various academic, and industry definitions of MS. Co-word and Principal Component Analysis (PCA) provide empirical support for the grouping into nine primary elements. We posit from the terms evolution analysis that there is a stasis currently faced in academic literature towards MS definition while the industry with its emphasis on ‘context’ has been dynamic. We believe that the proposed approach and results of the present empirical analysis can contribute to overcoming the current challenges to MS design and deployment – imprecise definition leading to its inadequate operationalisation." @default.
- W2891675916 created "2018-09-27" @default.
- W2891675916 creator A5023704786 @default.
- W2891675916 creator A5034578650 @default.
- W2891675916 creator A5080702425 @default.
- W2891675916 date "2018-09-08" @default.
- W2891675916 modified "2023-10-18" @default.
- W2891675916 title "Assessing manufacturing strategy definitions utilising text-mining" @default.
- W2891675916 cites W1500810283 @default.
- W2891675916 cites W1827148989 @default.
- W2891675916 cites W1876799794 @default.
- W2891675916 cites W1952397459 @default.
- W2891675916 cites W1969519932 @default.
- W2891675916 cites W1974899701 @default.
- W2891675916 cites W1978687871 @default.
- W2891675916 cites W1982729173 @default.
- W2891675916 cites W1986303867 @default.
- W2891675916 cites W1991316873 @default.
- W2891675916 cites W1991600132 @default.
- W2891675916 cites W1995200506 @default.
- W2891675916 cites W2001764862 @default.
- W2891675916 cites W2001994983 @default.
- W2891675916 cites W2008735451 @default.
- W2891675916 cites W2010135803 @default.
- W2891675916 cites W2010364054 @default.
- W2891675916 cites W2012892181 @default.
- W2891675916 cites W2016866273 @default.
- W2891675916 cites W2018052556 @default.
- W2891675916 cites W2019196013 @default.
- W2891675916 cites W2020087624 @default.
- W2891675916 cites W2020403534 @default.
- W2891675916 cites W2023728169 @default.
- W2891675916 cites W2026848733 @default.
- W2891675916 cites W2027280078 @default.
- W2891675916 cites W2033087976 @default.
- W2891675916 cites W2035199606 @default.
- W2891675916 cites W2041053185 @default.
- W2891675916 cites W2047279184 @default.
- W2891675916 cites W2062658774 @default.
- W2891675916 cites W2065356499 @default.
- W2891675916 cites W2069953825 @default.
- W2891675916 cites W2072461643 @default.
- W2891675916 cites W2074153357 @default.
- W2891675916 cites W2074847743 @default.
- W2891675916 cites W2076494901 @default.
- W2891675916 cites W2085146374 @default.
- W2891675916 cites W2086265038 @default.
- W2891675916 cites W2092382627 @default.
- W2891675916 cites W2095709770 @default.
- W2891675916 cites W2096056122 @default.
- W2891675916 cites W2099257963 @default.
- W2891675916 cites W2114663259 @default.
- W2891675916 cites W2121771218 @default.
- W2891675916 cites W2158186940 @default.
- W2891675916 cites W2162739626 @default.
- W2891675916 cites W2170718747 @default.
- W2891675916 cites W2336082409 @default.
- W2891675916 cites W2531091421 @default.
- W2891675916 cites W2596192480 @default.
- W2891675916 cites W3122331773 @default.
- W2891675916 cites W3123625486 @default.
- W2891675916 doi "https://doi.org/10.1080/00207543.2018.1512764" @default.
- W2891675916 hasPublicationYear "2018" @default.
- W2891675916 type Work @default.
- W2891675916 sameAs 2891675916 @default.
- W2891675916 citedByCount "22" @default.
- W2891675916 countsByYear W28916759162019 @default.
- W2891675916 countsByYear W28916759162020 @default.
- W2891675916 countsByYear W28916759162021 @default.
- W2891675916 countsByYear W28916759162022 @default.
- W2891675916 countsByYear W28916759162023 @default.
- W2891675916 crossrefType "journal-article" @default.
- W2891675916 hasAuthorship W2891675916A5023704786 @default.
- W2891675916 hasAuthorship W2891675916A5034578650 @default.
- W2891675916 hasAuthorship W2891675916A5080702425 @default.
- W2891675916 hasConcept C105339364 @default.
- W2891675916 hasConcept C105795698 @default.
- W2891675916 hasConcept C11171543 @default.
- W2891675916 hasConcept C115903868 @default.
- W2891675916 hasConcept C120936955 @default.
- W2891675916 hasConcept C127413603 @default.
- W2891675916 hasConcept C151730666 @default.
- W2891675916 hasConcept C15744967 @default.
- W2891675916 hasConcept C199360897 @default.
- W2891675916 hasConcept C2522767166 @default.
- W2891675916 hasConcept C2778012447 @default.
- W2891675916 hasConcept C2779343474 @default.
- W2891675916 hasConcept C2781140086 @default.
- W2891675916 hasConcept C33923547 @default.
- W2891675916 hasConcept C41008148 @default.
- W2891675916 hasConcept C539667460 @default.
- W2891675916 hasConcept C56739046 @default.
- W2891675916 hasConcept C86803240 @default.
- W2891675916 hasConceptScore W2891675916C105339364 @default.
- W2891675916 hasConceptScore W2891675916C105795698 @default.
- W2891675916 hasConceptScore W2891675916C11171543 @default.
- W2891675916 hasConceptScore W2891675916C115903868 @default.
- W2891675916 hasConceptScore W2891675916C120936955 @default.