Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891676927> ?p ?o ?g. }
- W2891676927 endingPage "1372" @default.
- W2891676927 startingPage "1366" @default.
- W2891676927 abstract "Abstract Motivation Many GWAS conducted in the past decade have identified tens of thousands of disease related variants, which in total explained only part of the heritability for most traits. There remain many more genetics variants with small effect sizes to be discovered. This has motivated the development of sequencing studies with larger sample sizes and increased resolution of genotyped variants, e.g., the ongoing NHLBI Trans-Omics for Precision Medicine (TOPMed) whole genome sequencing project. An alternative approach is the development of novel and more powerful statistical methods. The current dominating approach in the field of GWAS analysis is the “single trait single variant” association test, despite the fact that most GWAS are conducted in deeply-phenotyped cohorts with many correlated traits measured. In this paper, we aim to develop rigorous methods that integrate multiple correlated traits and multiple variants to improve the power to detect novel variants. In recognition of the difficulty of accessing raw genotype and phenotype data due to privacy and logistic concerns, we develop methods that are applicable to publicly available GWAS summary data. Results We build rigorous statistical models for GWAS summary statistics to motivate novel multi-trait SNP-set association tests, including variance component test, burden test and their adaptive test, and develop efficient numerical algorithms to quickly compute their analytical P-values. We implement the proposed methods in an open source R package. We conduct thorough simulation studies to verify the proposed methods rigorously control type I errors at the genome-wide significance level, and further demonstrate their utility via comprehensive analysis of GWAS summary data for multiple lipids traits and glycemic traits. We identified many novel loci that were not detected by the individual trait based GWAS analysis. Availability and implementation We have implemented the proposed methods in an R package freely available at http://www.github.com/baolinwu/MSKAT. Supplementary information Supplementary data are available at Bioinformatics online." @default.
- W2891676927 created "2018-09-27" @default.
- W2891676927 creator A5029703168 @default.
- W2891676927 creator A5073416951 @default.
- W2891676927 date "2018-09-19" @default.
- W2891676927 modified "2023-10-18" @default.
- W2891676927 title "Powerful and efficient SNP-set association tests across multiple phenotypes using GWAS summary data" @default.
- W2891676927 cites W1534058232 @default.
- W2891676927 cites W1747693127 @default.
- W2891676927 cites W1902117070 @default.
- W2891676927 cites W1913834252 @default.
- W2891676927 cites W1966073296 @default.
- W2891676927 cites W1978464661 @default.
- W2891676927 cites W1980991473 @default.
- W2891676927 cites W1982636457 @default.
- W2891676927 cites W1982959887 @default.
- W2891676927 cites W1984794443 @default.
- W2891676927 cites W1991088942 @default.
- W2891676927 cites W2003283154 @default.
- W2891676927 cites W2016122322 @default.
- W2891676927 cites W2030601559 @default.
- W2891676927 cites W2041953582 @default.
- W2891676927 cites W2053018220 @default.
- W2891676927 cites W2056165766 @default.
- W2891676927 cites W2057937295 @default.
- W2891676927 cites W2065397672 @default.
- W2891676927 cites W2068130455 @default.
- W2891676927 cites W2075690247 @default.
- W2891676927 cites W2084716055 @default.
- W2891676927 cites W2085650447 @default.
- W2891676927 cites W2089276164 @default.
- W2891676927 cites W2091968512 @default.
- W2891676927 cites W2096791516 @default.
- W2891676927 cites W2099086736 @default.
- W2891676927 cites W2105281057 @default.
- W2891676927 cites W2108388328 @default.
- W2891676927 cites W2115801316 @default.
- W2891676927 cites W2121298928 @default.
- W2891676927 cites W2144596601 @default.
- W2891676927 cites W2146519949 @default.
- W2891676927 cites W2150806217 @default.
- W2891676927 cites W2152603994 @default.
- W2891676927 cites W2153118028 @default.
- W2891676927 cites W2159422401 @default.
- W2891676927 cites W2161381425 @default.
- W2891676927 cites W2161527180 @default.
- W2891676927 cites W2162319675 @default.
- W2891676927 cites W2164276007 @default.
- W2891676927 cites W2169555151 @default.
- W2891676927 cites W2171418097 @default.
- W2891676927 cites W2195783463 @default.
- W2891676927 cites W2204635892 @default.
- W2891676927 cites W2275178236 @default.
- W2891676927 cites W2290321855 @default.
- W2891676927 cites W2292058622 @default.
- W2891676927 cites W2302979210 @default.
- W2891676927 cites W2514447495 @default.
- W2891676927 cites W2515217061 @default.
- W2891676927 cites W2553123256 @default.
- W2891676927 cites W2607436010 @default.
- W2891676927 cites W2617606054 @default.
- W2891676927 cites W2725988230 @default.
- W2891676927 cites W2789901287 @default.
- W2891676927 cites W2953072478 @default.
- W2891676927 doi "https://doi.org/10.1093/bioinformatics/bty811" @default.
- W2891676927 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6477978" @default.
- W2891676927 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30239606" @default.
- W2891676927 hasPublicationYear "2018" @default.
- W2891676927 type Work @default.
- W2891676927 sameAs 2891676927 @default.
- W2891676927 citedByCount "13" @default.
- W2891676927 countsByYear W28916769272019 @default.
- W2891676927 countsByYear W28916769272020 @default.
- W2891676927 countsByYear W28916769272021 @default.
- W2891676927 countsByYear W28916769272022 @default.
- W2891676927 countsByYear W28916769272023 @default.
- W2891676927 crossrefType "journal-article" @default.
- W2891676927 hasAuthorship W2891676927A5029703168 @default.
- W2891676927 hasAuthorship W2891676927A5073416951 @default.
- W2891676927 hasBestOaLocation W28916769272 @default.
- W2891676927 hasConcept C104317684 @default.
- W2891676927 hasConcept C105795698 @default.
- W2891676927 hasConcept C106208931 @default.
- W2891676927 hasConcept C106934330 @default.
- W2891676927 hasConcept C124101348 @default.
- W2891676927 hasConcept C129848803 @default.
- W2891676927 hasConcept C135763542 @default.
- W2891676927 hasConcept C139275648 @default.
- W2891676927 hasConcept C153209595 @default.
- W2891676927 hasConcept C161890455 @default.
- W2891676927 hasConcept C186413461 @default.
- W2891676927 hasConcept C199360897 @default.
- W2891676927 hasConcept C2994538360 @default.
- W2891676927 hasConcept C33923547 @default.
- W2891676927 hasConcept C40696583 @default.
- W2891676927 hasConcept C41008148 @default.
- W2891676927 hasConcept C54355233 @default.
- W2891676927 hasConcept C70721500 @default.