Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891677646> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2891677646 abstract "The demented brain wiring undergoes several changes with dementia progression. However, in early dementia stages, particularly early mild cognitive impairment (eMCI), these remain challenging to spot. Hence, developing accurate diagnostic techniques for eMCI identification is critical for early intervention to prevent the onset of Alzheimer’s Disease (AD). There is a large body of machine-learning based research developed for classifying different brain states (e.g., AD vs MCI). These works can be fundamentally grouped into two categories. The first uses correlational methods, such as canonical correlation analysis (CCA) and its variants, with the aim to identify most correlated features for diagnosis. The second includes discriminative methods, such as feature selection methods and linear discriminative analysis (LDA) and its variants to identify brain features that distinguish between two brain states. However, existing methods examine these correlational and discriminative brain data independently, which overlooks the complementary information provided by both techniques, which could prove to be useful in the classification of patients with dementia. On the other hand, how early dementia affects cortical brain connections in morphology remains largely unexplored. To address these limitations, we propose a joint correlational and discriminative ensemble learning framework for eMCI diagnosis that leverages a novel brain network representation, derived from the cortex. Specifically, we devise ‘the shallow convolutional brain multiplex’ (SCBM), which not only measures the similarity in morphology between pairs of brain regions, but also encodes the relationship between two morphological brain networks. Then, we represent each individual brain using a set of SCBMs, which are used to train joint ensemble CCA-SVM and LDA-based classifier. Our framework outperformed several state-of-the-art methods by 3-7% including independent correlational and discriminative methods." @default.
- W2891677646 created "2018-09-27" @default.
- W2891677646 creator A5044447586 @default.
- W2891677646 creator A5048784346 @default.
- W2891677646 creator A5075357615 @default.
- W2891677646 date "2018-01-01" @default.
- W2891677646 modified "2023-09-24" @default.
- W2891677646 title "Joint Correlational and Discriminative Ensemble Classifier Learning for Dementia Stratification Using Shallow Brain Multiplexes" @default.
- W2891677646 cites W2076455317 @default.
- W2891677646 cites W2100235303 @default.
- W2891677646 cites W2123623728 @default.
- W2891677646 cites W2136288391 @default.
- W2891677646 cites W2143043751 @default.
- W2891677646 cites W2154053567 @default.
- W2891677646 cites W2256782633 @default.
- W2891677646 cites W2345678177 @default.
- W2891677646 cites W2606546398 @default.
- W2891677646 cites W2752078407 @default.
- W2891677646 cites W2753120040 @default.
- W2891677646 cites W2794107469 @default.
- W2891677646 cites W4241074797 @default.
- W2891677646 cites W829552687 @default.
- W2891677646 doi "https://doi.org/10.1007/978-3-030-00928-1_68" @default.
- W2891677646 hasPublicationYear "2018" @default.
- W2891677646 type Work @default.
- W2891677646 sameAs 2891677646 @default.
- W2891677646 citedByCount "5" @default.
- W2891677646 countsByYear W28916776462020 @default.
- W2891677646 countsByYear W28916776462021 @default.
- W2891677646 crossrefType "book-chapter" @default.
- W2891677646 hasAuthorship W2891677646A5044447586 @default.
- W2891677646 hasAuthorship W2891677646A5048784346 @default.
- W2891677646 hasAuthorship W2891677646A5075357615 @default.
- W2891677646 hasBestOaLocation W28916776462 @default.
- W2891677646 hasConcept C119857082 @default.
- W2891677646 hasConcept C126838900 @default.
- W2891677646 hasConcept C142724271 @default.
- W2891677646 hasConcept C143409427 @default.
- W2891677646 hasConcept C145940234 @default.
- W2891677646 hasConcept C148483581 @default.
- W2891677646 hasConcept C153180895 @default.
- W2891677646 hasConcept C154945302 @default.
- W2891677646 hasConcept C15744967 @default.
- W2891677646 hasConcept C169760540 @default.
- W2891677646 hasConcept C2779134260 @default.
- W2891677646 hasConcept C2779483572 @default.
- W2891677646 hasConcept C41008148 @default.
- W2891677646 hasConcept C58693492 @default.
- W2891677646 hasConcept C69738355 @default.
- W2891677646 hasConcept C71924100 @default.
- W2891677646 hasConcept C81363708 @default.
- W2891677646 hasConcept C95623464 @default.
- W2891677646 hasConcept C97931131 @default.
- W2891677646 hasConceptScore W2891677646C119857082 @default.
- W2891677646 hasConceptScore W2891677646C126838900 @default.
- W2891677646 hasConceptScore W2891677646C142724271 @default.
- W2891677646 hasConceptScore W2891677646C143409427 @default.
- W2891677646 hasConceptScore W2891677646C145940234 @default.
- W2891677646 hasConceptScore W2891677646C148483581 @default.
- W2891677646 hasConceptScore W2891677646C153180895 @default.
- W2891677646 hasConceptScore W2891677646C154945302 @default.
- W2891677646 hasConceptScore W2891677646C15744967 @default.
- W2891677646 hasConceptScore W2891677646C169760540 @default.
- W2891677646 hasConceptScore W2891677646C2779134260 @default.
- W2891677646 hasConceptScore W2891677646C2779483572 @default.
- W2891677646 hasConceptScore W2891677646C41008148 @default.
- W2891677646 hasConceptScore W2891677646C58693492 @default.
- W2891677646 hasConceptScore W2891677646C69738355 @default.
- W2891677646 hasConceptScore W2891677646C71924100 @default.
- W2891677646 hasConceptScore W2891677646C81363708 @default.
- W2891677646 hasConceptScore W2891677646C95623464 @default.
- W2891677646 hasConceptScore W2891677646C97931131 @default.
- W2891677646 hasLocation W28916776461 @default.
- W2891677646 hasLocation W28916776462 @default.
- W2891677646 hasOpenAccess W2891677646 @default.
- W2891677646 hasPrimaryLocation W28916776461 @default.
- W2891677646 hasRelatedWork W187870010 @default.
- W2891677646 hasRelatedWork W1994690989 @default.
- W2891677646 hasRelatedWork W2017237939 @default.
- W2891677646 hasRelatedWork W2049684782 @default.
- W2891677646 hasRelatedWork W2056734048 @default.
- W2891677646 hasRelatedWork W2087451427 @default.
- W2891677646 hasRelatedWork W2174740345 @default.
- W2891677646 hasRelatedWork W2543827182 @default.
- W2891677646 hasRelatedWork W2593211200 @default.
- W2891677646 hasRelatedWork W2606285249 @default.
- W2891677646 hasRelatedWork W2754382501 @default.
- W2891677646 hasRelatedWork W2887940751 @default.
- W2891677646 hasRelatedWork W2926087227 @default.
- W2891677646 hasRelatedWork W3021777245 @default.
- W2891677646 hasRelatedWork W3077868498 @default.
- W2891677646 hasRelatedWork W3151859720 @default.
- W2891677646 hasRelatedWork W3162685972 @default.
- W2891677646 hasRelatedWork W3185646597 @default.
- W2891677646 hasRelatedWork W3210093867 @default.
- W2891677646 isParatext "false" @default.
- W2891677646 isRetracted "false" @default.
- W2891677646 magId "2891677646" @default.
- W2891677646 workType "book-chapter" @default.