Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891681985> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2891681985 endingPage "1654" @default.
- W2891681985 startingPage "1654" @default.
- W2891681985 abstract "In this article, the Grade Correspondence Analysis (GCA) with posterior clustering and visualization is introduced and applied to extract important features to reveal households’ characteristics based on electricity usage data. The main goal of the analysis is to automatically extract, in a non-intrusive way, number of socio-economic household properties including family type, age of inhabitants, employment type, house type, and number of bedrooms. The knowledge of specific properties enables energy utilities to develop targeted energy conservation tariffs and to assure balanced operation management. In particular, classification of the households based on the electricity usage delivers value added information to allow accurate demand planning with the goal to enhance the overall efficiency of the network. The approach was evaluated by analyzing smart meter data collected from 4182 households in Ireland over a period of 1.5 years. The analysis outcome shows that revealing characteristics from smart meter data is feasible, and the proposed machine learning methods were yielding for an accuracy of approx. 90% and Area Under Receiver Operating Curve (AUC) of 0.82." @default.
- W2891681985 created "2018-09-27" @default.
- W2891681985 creator A5029575854 @default.
- W2891681985 creator A5047203445 @default.
- W2891681985 creator A5051858208 @default.
- W2891681985 date "2018-09-14" @default.
- W2891681985 modified "2023-10-12" @default.
- W2891681985 title "Revealing Household Characteristics from Electricity Meter Data with Grade Analysis and Machine Learning Algorithms" @default.
- W2891681985 cites W1954438002 @default.
- W2891681985 cites W1972632157 @default.
- W2891681985 cites W1994042232 @default.
- W2891681985 cites W1997729648 @default.
- W2891681985 cites W2050747161 @default.
- W2891681985 cites W2057091896 @default.
- W2891681985 cites W2064759762 @default.
- W2891681985 cites W2065039954 @default.
- W2891681985 cites W2066384055 @default.
- W2891681985 cites W2085953481 @default.
- W2891681985 cites W2110366306 @default.
- W2891681985 cites W2127732301 @default.
- W2891681985 cites W2130040717 @default.
- W2891681985 cites W2151729265 @default.
- W2891681985 cites W2152134427 @default.
- W2891681985 cites W2156665896 @default.
- W2891681985 cites W2158698691 @default.
- W2891681985 cites W2418306335 @default.
- W2891681985 cites W2491991542 @default.
- W2891681985 cites W2605864735 @default.
- W2891681985 cites W2760841823 @default.
- W2891681985 cites W2799404019 @default.
- W2891681985 doi "https://doi.org/10.3390/app8091654" @default.
- W2891681985 hasPublicationYear "2018" @default.
- W2891681985 type Work @default.
- W2891681985 sameAs 2891681985 @default.
- W2891681985 citedByCount "21" @default.
- W2891681985 countsByYear W28916819852019 @default.
- W2891681985 countsByYear W28916819852020 @default.
- W2891681985 countsByYear W28916819852021 @default.
- W2891681985 countsByYear W28916819852022 @default.
- W2891681985 countsByYear W28916819852023 @default.
- W2891681985 crossrefType "journal-article" @default.
- W2891681985 hasAuthorship W2891681985A5029575854 @default.
- W2891681985 hasAuthorship W2891681985A5047203445 @default.
- W2891681985 hasAuthorship W2891681985A5051858208 @default.
- W2891681985 hasBestOaLocation W28916819851 @default.
- W2891681985 hasConcept C119599485 @default.
- W2891681985 hasConcept C119857082 @default.
- W2891681985 hasConcept C121332964 @default.
- W2891681985 hasConcept C124101348 @default.
- W2891681985 hasConcept C127413603 @default.
- W2891681985 hasConcept C134560507 @default.
- W2891681985 hasConcept C162324750 @default.
- W2891681985 hasConcept C163258240 @default.
- W2891681985 hasConcept C206658404 @default.
- W2891681985 hasConcept C2779510800 @default.
- W2891681985 hasConcept C41008148 @default.
- W2891681985 hasConcept C62520636 @default.
- W2891681985 hasConcept C67172668 @default.
- W2891681985 hasConcept C73555534 @default.
- W2891681985 hasConceptScore W2891681985C119599485 @default.
- W2891681985 hasConceptScore W2891681985C119857082 @default.
- W2891681985 hasConceptScore W2891681985C121332964 @default.
- W2891681985 hasConceptScore W2891681985C124101348 @default.
- W2891681985 hasConceptScore W2891681985C127413603 @default.
- W2891681985 hasConceptScore W2891681985C134560507 @default.
- W2891681985 hasConceptScore W2891681985C162324750 @default.
- W2891681985 hasConceptScore W2891681985C163258240 @default.
- W2891681985 hasConceptScore W2891681985C206658404 @default.
- W2891681985 hasConceptScore W2891681985C2779510800 @default.
- W2891681985 hasConceptScore W2891681985C41008148 @default.
- W2891681985 hasConceptScore W2891681985C62520636 @default.
- W2891681985 hasConceptScore W2891681985C67172668 @default.
- W2891681985 hasConceptScore W2891681985C73555534 @default.
- W2891681985 hasFunder F4320322511 @default.
- W2891681985 hasIssue "9" @default.
- W2891681985 hasLocation W28916819851 @default.
- W2891681985 hasLocation W28916819852 @default.
- W2891681985 hasOpenAccess W2891681985 @default.
- W2891681985 hasPrimaryLocation W28916819851 @default.
- W2891681985 hasRelatedWork W1203447945 @default.
- W2891681985 hasRelatedWork W2041191992 @default.
- W2891681985 hasRelatedWork W2112742647 @default.
- W2891681985 hasRelatedWork W2145659001 @default.
- W2891681985 hasRelatedWork W2475429996 @default.
- W2891681985 hasRelatedWork W2565365695 @default.
- W2891681985 hasRelatedWork W2981749166 @default.
- W2891681985 hasRelatedWork W3016120340 @default.
- W2891681985 hasRelatedWork W3045135015 @default.
- W2891681985 hasRelatedWork W4377294584 @default.
- W2891681985 hasVolume "8" @default.
- W2891681985 isParatext "false" @default.
- W2891681985 isRetracted "false" @default.
- W2891681985 magId "2891681985" @default.
- W2891681985 workType "article" @default.