Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891690844> ?p ?o ?g. }
- W2891690844 abstract "Organisms adapt their metabolism and draw on reserves as a consequence of food deprivation. The central role of the liver in starvation response is to coordinate a sufficient energy supply for the entire organism, which has frequently been investigated. However, knowledge of how circadian rhythms impact on and alter this response is scarce. Therefore, we investigated the influence of different timings of starvation on global hepatic gene expression. Mice (n = 3 each) were challenged with 24-h food deprivation started in the morning or evening, coupled with refeeding for different lengths and compared with ad libitum fed control groups. Alterations in hepatocyte gene expression were quantified using microarrays and confirmed or complemented with qPCR, especially for lowly detectable transcription factors. Analysis was performed using self-organizing maps (SOMs), which bases on clustering genes with similar expression profiles. This provides an intuitive overview of expression trends and allows easier global comparisons between complex conditions. Transcriptome analysis revealed a strong circadian-driven response to fasting based on the diurnal expression of transcription factors (e.g., Ppara, Pparg). Starvation initiated in the morning produced known metabolic adaptations in the liver; e.g., switching from glucose storage to consumption and gluconeogenesis. However, starvation initiated in the evening produced a different expression signature that was controlled by yet unknown regulatory mechanisms. For example, the expression of genes involved in gluconeogenesis decreased and fatty acid and cholesterol synthesis genes were induced. The differential regulation after morning and evening starvation were also reflected at the lipidome level. The accumulation of hepatocellular storage lipids (triacylglycerides, cholesteryl esters) was significantly higher after the initiation of starvation in the morning compared to the evening. Concerning refeeding, the gene expression pattern after a 12 h refeeding period largely resembled that of the corresponding starvation state but approached the ad libitum control state after refeeding for 21 h. Some components of these regulatory circuits are discussed. Collectively, these data illustrate a highly time-dependent starvation response in the liver and suggest that a circadian influence cannot be neglected when starvation is the focus of research or medicine, e.g., in the case of treating victims of sudden starvation events." @default.
- W2891690844 created "2018-09-27" @default.
- W2891690844 creator A5000266633 @default.
- W2891690844 creator A5031599364 @default.
- W2891690844 creator A5040093734 @default.
- W2891690844 creator A5045348622 @default.
- W2891690844 creator A5068461932 @default.
- W2891690844 creator A5079271547 @default.
- W2891690844 creator A5085979847 @default.
- W2891690844 creator A5089080265 @default.
- W2891690844 date "2018-09-10" @default.
- W2891690844 modified "2023-10-17" @default.
- W2891690844 title "The Diurnal Timing of Starvation Differently Impacts Murine Hepatic Gene Expression and Lipid Metabolism – A Systems Biology Analysis Using Self-Organizing Maps" @default.
- W2891690844 cites W1494992303 @default.
- W2891690844 cites W1503760388 @default.
- W2891690844 cites W1569454591 @default.
- W2891690844 cites W1578577647 @default.
- W2891690844 cites W1587163374 @default.
- W2891690844 cites W160527898 @default.
- W2891690844 cites W1963837014 @default.
- W2891690844 cites W1967954429 @default.
- W2891690844 cites W1969896761 @default.
- W2891690844 cites W1972460996 @default.
- W2891690844 cites W1975365310 @default.
- W2891690844 cites W1977556410 @default.
- W2891690844 cites W1982583749 @default.
- W2891690844 cites W1983144305 @default.
- W2891690844 cites W1989619485 @default.
- W2891690844 cites W1992516918 @default.
- W2891690844 cites W1992726958 @default.
- W2891690844 cites W1993235686 @default.
- W2891690844 cites W1995873922 @default.
- W2891690844 cites W1998973957 @default.
- W2891690844 cites W2007247773 @default.
- W2891690844 cites W2017917448 @default.
- W2891690844 cites W2018497562 @default.
- W2891690844 cites W2034046497 @default.
- W2891690844 cites W2046577583 @default.
- W2891690844 cites W2057080091 @default.
- W2891690844 cites W2057421161 @default.
- W2891690844 cites W2059569301 @default.
- W2891690844 cites W2068648361 @default.
- W2891690844 cites W2074076323 @default.
- W2891690844 cites W2078176020 @default.
- W2891690844 cites W2085957056 @default.
- W2891690844 cites W2090060547 @default.
- W2891690844 cites W2093725321 @default.
- W2891690844 cites W2096173332 @default.
- W2891690844 cites W2098360522 @default.
- W2891690844 cites W2103017472 @default.
- W2891690844 cites W2103116278 @default.
- W2891690844 cites W2106608030 @default.
- W2891690844 cites W2107011114 @default.
- W2891690844 cites W2107138848 @default.
- W2891690844 cites W2107398421 @default.
- W2891690844 cites W2108130957 @default.
- W2891690844 cites W2108971238 @default.
- W2891690844 cites W2114822868 @default.
- W2891690844 cites W2123068738 @default.
- W2891690844 cites W2126271200 @default.
- W2891690844 cites W2129132663 @default.
- W2891690844 cites W2133614954 @default.
- W2891690844 cites W2134377844 @default.
- W2891690844 cites W2139696807 @default.
- W2891690844 cites W2146124002 @default.
- W2891690844 cites W2147621341 @default.
- W2891690844 cites W2149744096 @default.
- W2891690844 cites W2157638939 @default.
- W2891690844 cites W2157940848 @default.
- W2891690844 cites W2161319069 @default.
- W2891690844 cites W2165681289 @default.
- W2891690844 cites W2168526937 @default.
- W2891690844 cites W2170913795 @default.
- W2891690844 cites W2406151438 @default.
- W2891690844 cites W2413738662 @default.
- W2891690844 cites W2464717012 @default.
- W2891690844 cites W2527481631 @default.
- W2891690844 cites W2607662745 @default.
- W2891690844 cites W2611680186 @default.
- W2891690844 cites W2612631436 @default.
- W2891690844 cites W2619024573 @default.
- W2891690844 cites W2749143727 @default.
- W2891690844 cites W4229880569 @default.
- W2891690844 cites W4245801819 @default.
- W2891690844 cites W65738273 @default.
- W2891690844 doi "https://doi.org/10.3389/fphys.2018.01180" @default.
- W2891690844 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6146234" @default.
- W2891690844 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30271348" @default.
- W2891690844 hasPublicationYear "2018" @default.
- W2891690844 type Work @default.
- W2891690844 sameAs 2891690844 @default.
- W2891690844 citedByCount "10" @default.
- W2891690844 countsByYear W28916908442019 @default.
- W2891690844 countsByYear W28916908442020 @default.
- W2891690844 countsByYear W28916908442021 @default.
- W2891690844 countsByYear W28916908442022 @default.
- W2891690844 crossrefType "journal-article" @default.
- W2891690844 hasAuthorship W2891690844A5000266633 @default.
- W2891690844 hasAuthorship W2891690844A5031599364 @default.
- W2891690844 hasAuthorship W2891690844A5040093734 @default.