Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891696977> ?p ?o ?g. }
- W2891696977 abstract "We study the spin-$frac{1}{2}$ antiferromagnetic Heisenberg model on an infinity-by-$N$ square lattice for even $N$'s up to $14$. Previously, the nonlinear sigma model perturbatively predicts that its spin rotational symmetry asymptotically breaks when $Nrightarrow infty$, i.e., when it is two-dimensional (2D). However, we identified a critical width $N_c = 10$ for which this symmetry breaks spontaneously. It defines a dimensional transition from one-dimension (1D) including quasi-1D to 2D. The finite-size effect differs from that of the $N$-by-$N$ lattice. The ground state (GS) energy per site approaches the thermodynamic limit value, in agreement with the previously accepted value, by one order of $1/N$ faster than when using $N$-by-$N$ lattices in the literature. We build and variationally solve a matrix product state (MPS) on a chain, converting the $N$ sites in the rung into an effective site. We show that the area law of entanglement entropy does not apply when $N$ increases in our method, and show that the reduced density matrix of each effective site will have a saturating number of dominant diagonal elements with increasing $N$. These two characteristics make the MPS rank needed to obtain a demanded energy accuracy quickly saturate when $N$ is large, making our algorithm efficient for large $N$'s. And, the latter enables space reduction in MPS. Within the framework of MPS, we prove a theorem that the spin-spin correlation at infinite separation is the square of staggered magnetization and demonstrate that the eigenvalue structure of a building MPS unit of $langle gmid grangle$, $mid grangle$ being the GS, is responsible for order, disorder and quasi-long-range order." @default.
- W2891696977 created "2018-09-27" @default.
- W2891696977 creator A5040215906 @default.
- W2891696977 creator A5091615384 @default.
- W2891696977 date "2019-04-29" @default.
- W2891696977 modified "2023-10-14" @default.
- W2891696977 title "Signature of a quantum dimensional transition in the spin- <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math> antiferromagnetic Heisenberg model on a square lattice and space reduction in the matrix product state" @default.
- W2891696977 cites W1525853849 @default.
- W2891696977 cites W1550516781 @default.
- W2891696977 cites W1922629554 @default.
- W2891696977 cites W1946143622 @default.
- W2891696977 cites W1973224679 @default.
- W2891696977 cites W1975635086 @default.
- W2891696977 cites W1976321356 @default.
- W2891696977 cites W1987155800 @default.
- W2891696977 cites W1990574621 @default.
- W2891696977 cites W1990759104 @default.
- W2891696977 cites W1992526006 @default.
- W2891696977 cites W1995450100 @default.
- W2891696977 cites W1997094164 @default.
- W2891696977 cites W1997895393 @default.
- W2891696977 cites W1999562842 @default.
- W2891696977 cites W2001474912 @default.
- W2891696977 cites W2003467305 @default.
- W2891696977 cites W2008068335 @default.
- W2891696977 cites W2008317504 @default.
- W2891696977 cites W2008348370 @default.
- W2891696977 cites W2010974419 @default.
- W2891696977 cites W2014237348 @default.
- W2891696977 cites W2016407890 @default.
- W2891696977 cites W2018259456 @default.
- W2891696977 cites W2019951041 @default.
- W2891696977 cites W2020326882 @default.
- W2891696977 cites W2023063755 @default.
- W2891696977 cites W2025247086 @default.
- W2891696977 cites W2026907619 @default.
- W2891696977 cites W2027389940 @default.
- W2891696977 cites W2031210998 @default.
- W2891696977 cites W2035828905 @default.
- W2891696977 cites W2036953988 @default.
- W2891696977 cites W2037768897 @default.
- W2891696977 cites W2039001221 @default.
- W2891696977 cites W2039668057 @default.
- W2891696977 cites W2039973605 @default.
- W2891696977 cites W2041245075 @default.
- W2891696977 cites W2048069458 @default.
- W2891696977 cites W2054408622 @default.
- W2891696977 cites W2055465100 @default.
- W2891696977 cites W2055891591 @default.
- W2891696977 cites W2063092915 @default.
- W2891696977 cites W2073058474 @default.
- W2891696977 cites W2074426935 @default.
- W2891696977 cites W2076461998 @default.
- W2891696977 cites W2077170530 @default.
- W2891696977 cites W2079282842 @default.
- W2891696977 cites W2081349344 @default.
- W2891696977 cites W2083814150 @default.
- W2891696977 cites W2091356356 @default.
- W2891696977 cites W2105531735 @default.
- W2891696977 cites W2132788370 @default.
- W2891696977 cites W2147375813 @default.
- W2891696977 cites W2154815292 @default.
- W2891696977 cites W2160648443 @default.
- W2891696977 cites W2161850306 @default.
- W2891696977 cites W2162874424 @default.
- W2891696977 cites W2167325579 @default.
- W2891696977 cites W2316179974 @default.
- W2891696977 cites W2317586084 @default.
- W2891696977 cites W2344793891 @default.
- W2891696977 cites W2441060148 @default.
- W2891696977 cites W2578784065 @default.
- W2891696977 cites W2728871493 @default.
- W2891696977 cites W2754504461 @default.
- W2891696977 cites W3023240136 @default.
- W2891696977 cites W3100705060 @default.
- W2891696977 cites W3103406660 @default.
- W2891696977 cites W4238090752 @default.
- W2891696977 doi "https://doi.org/10.1103/physrevb.99.134441" @default.
- W2891696977 hasPublicationYear "2019" @default.
- W2891696977 type Work @default.
- W2891696977 sameAs 2891696977 @default.
- W2891696977 citedByCount "2" @default.
- W2891696977 countsByYear W28916969772019 @default.
- W2891696977 countsByYear W28916969772022 @default.
- W2891696977 crossrefType "journal-article" @default.
- W2891696977 hasAuthorship W2891696977A5040215906 @default.
- W2891696977 hasAuthorship W2891696977A5091615384 @default.
- W2891696977 hasBestOaLocation W28916969772 @default.
- W2891696977 hasConcept C114614502 @default.
- W2891696977 hasConcept C121040770 @default.
- W2891696977 hasConcept C121332964 @default.
- W2891696977 hasConcept C155355069 @default.
- W2891696977 hasConcept C26873012 @default.
- W2891696977 hasConcept C2777620828 @default.
- W2891696977 hasConcept C33923547 @default.
- W2891696977 hasConcept C37914503 @default.
- W2891696977 hasConcept C51329190 @default.
- W2891696977 hasConcept C62520636 @default.
- W2891696977 hasConcept C69523127 @default.
- W2891696977 hasConcept C84114770 @default.