Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891705404> ?p ?o ?g. }
- W2891705404 endingPage "386" @default.
- W2891705404 startingPage "386" @default.
- W2891705404 abstract "Traffic prediction is a critical task for intelligent transportation systems (ITS). Prediction at intersections is challenging as it involves various participants, such as vehicles, cyclists, and pedestrians. In this paper, we propose a novel approach for the accurate intersection traffic prediction by introducing extra data sources other than road traffic volume data into the prediction model. In particular, we take advantage of the data collected from the reports of road accidents and roadworks happening near the intersections. In addition, we investigate two types of learning schemes, namely batch learning and online learning. Three popular ensemble decision tree models are used in the batch learning scheme, including Gradient Boosting Regression Trees (GBRT), Random Forest (RF) and Extreme Gradient Boosting Trees (XGBoost), while the Fast Incremental Model Trees with Drift Detection (FIMT-DD) model is adopted for the online learning scheme. The proposed approach is evaluated using public data sets released by the Victorian Government of Australia. The results indicate that the accuracy of intersection traffic prediction can be improved by incorporating nearby accidents and roadworks information." @default.
- W2891705404 created "2018-09-27" @default.
- W2891705404 creator A5000288828 @default.
- W2891705404 creator A5007993891 @default.
- W2891705404 creator A5075154508 @default.
- W2891705404 creator A5076576641 @default.
- W2891705404 date "2018-09-07" @default.
- W2891705404 modified "2023-10-07" @default.
- W2891705404 title "Intersection Traffic Prediction Using Decision Tree Models" @default.
- W2891705404 cites W1610291649 @default.
- W2891705404 cites W1963629073 @default.
- W2891705404 cites W1971993044 @default.
- W2891705404 cites W1973943669 @default.
- W2891705404 cites W1974539152 @default.
- W2891705404 cites W1976309217 @default.
- W2891705404 cites W1984969638 @default.
- W2891705404 cites W2004073866 @default.
- W2891705404 cites W2021153764 @default.
- W2891705404 cites W2036785686 @default.
- W2891705404 cites W2058551591 @default.
- W2891705404 cites W2083238230 @default.
- W2891705404 cites W2106100548 @default.
- W2891705404 cites W2123706197 @default.
- W2891705404 cites W2125817951 @default.
- W2891705404 cites W2132711183 @default.
- W2891705404 cites W2137052698 @default.
- W2891705404 cites W2175433587 @default.
- W2891705404 cites W2258955373 @default.
- W2891705404 cites W2343567063 @default.
- W2891705404 cites W2509202005 @default.
- W2891705404 cites W2516923985 @default.
- W2891705404 cites W2528339895 @default.
- W2891705404 cites W2529523863 @default.
- W2891705404 cites W2532401748 @default.
- W2891705404 cites W2548426745 @default.
- W2891705404 cites W2575448570 @default.
- W2891705404 cites W2593182953 @default.
- W2891705404 cites W2596628535 @default.
- W2891705404 cites W2597998853 @default.
- W2891705404 cites W2604462068 @default.
- W2891705404 cites W2605092867 @default.
- W2891705404 cites W2605614336 @default.
- W2891705404 cites W2748807708 @default.
- W2891705404 cites W2752901856 @default.
- W2891705404 cites W2768745333 @default.
- W2891705404 cites W2770864824 @default.
- W2891705404 cites W2786793274 @default.
- W2891705404 cites W2790930604 @default.
- W2891705404 cites W2791750046 @default.
- W2891705404 cites W2792310543 @default.
- W2891705404 cites W2804672261 @default.
- W2891705404 doi "https://doi.org/10.3390/sym10090386" @default.
- W2891705404 hasPublicationYear "2018" @default.
- W2891705404 type Work @default.
- W2891705404 sameAs 2891705404 @default.
- W2891705404 citedByCount "45" @default.
- W2891705404 countsByYear W28917054042019 @default.
- W2891705404 countsByYear W28917054042020 @default.
- W2891705404 countsByYear W28917054042021 @default.
- W2891705404 countsByYear W28917054042022 @default.
- W2891705404 countsByYear W28917054042023 @default.
- W2891705404 crossrefType "journal-article" @default.
- W2891705404 hasAuthorship W2891705404A5000288828 @default.
- W2891705404 hasAuthorship W2891705404A5007993891 @default.
- W2891705404 hasAuthorship W2891705404A5075154508 @default.
- W2891705404 hasAuthorship W2891705404A5076576641 @default.
- W2891705404 hasBestOaLocation W28917054041 @default.
- W2891705404 hasConcept C113174947 @default.
- W2891705404 hasConcept C119857082 @default.
- W2891705404 hasConcept C124101348 @default.
- W2891705404 hasConcept C127413603 @default.
- W2891705404 hasConcept C134306372 @default.
- W2891705404 hasConcept C154945302 @default.
- W2891705404 hasConcept C169258074 @default.
- W2891705404 hasConcept C22212356 @default.
- W2891705404 hasConcept C33923547 @default.
- W2891705404 hasConcept C41008148 @default.
- W2891705404 hasConcept C45804977 @default.
- W2891705404 hasConcept C45942800 @default.
- W2891705404 hasConcept C46686674 @default.
- W2891705404 hasConcept C47796450 @default.
- W2891705404 hasConcept C5481197 @default.
- W2891705404 hasConcept C64543145 @default.
- W2891705404 hasConcept C70153297 @default.
- W2891705404 hasConcept C84525736 @default.
- W2891705404 hasConceptScore W2891705404C113174947 @default.
- W2891705404 hasConceptScore W2891705404C119857082 @default.
- W2891705404 hasConceptScore W2891705404C124101348 @default.
- W2891705404 hasConceptScore W2891705404C127413603 @default.
- W2891705404 hasConceptScore W2891705404C134306372 @default.
- W2891705404 hasConceptScore W2891705404C154945302 @default.
- W2891705404 hasConceptScore W2891705404C169258074 @default.
- W2891705404 hasConceptScore W2891705404C22212356 @default.
- W2891705404 hasConceptScore W2891705404C33923547 @default.
- W2891705404 hasConceptScore W2891705404C41008148 @default.
- W2891705404 hasConceptScore W2891705404C45804977 @default.
- W2891705404 hasConceptScore W2891705404C45942800 @default.
- W2891705404 hasConceptScore W2891705404C46686674 @default.