Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891711161> ?p ?o ?g. }
- W2891711161 endingPage "2540" @default.
- W2891711161 startingPage "2526" @default.
- W2891711161 abstract "In order to deeply exploit intrinsic data feature information hidden among the process data, an improved kernel principal component analysis (KPCA) method is proposed, which is referred to as deep principal component analysis (DePCA). Specifically, motivated by the deep learning strategy, we design a hierarchical statistical model structure to extract multilayer data features, including both the linear and nonlinear principal components. To reduce the computation complexity in nonlinear feature extraction, the feature-samples’ selection technique is applied to build the sparse kernel model for DePCA. To integrate the monitoring statistics at each feature layer, Bayesian inference is used to transform the monitoring statistics into fault probabilities, and then, two probability-based DePCA monitoring statistics are constructed by weighting the fault probabilities at all the feature layers. Two case studies involving a simulated nonlinear system and the benchmark Tennessee Eastman process demonstrate the superior fault detection performance of the proposed DePCA method over the traditional KPCA-based methods." @default.
- W2891711161 created "2018-09-27" @default.
- W2891711161 creator A5002319878 @default.
- W2891711161 creator A5067133312 @default.
- W2891711161 creator A5078024858 @default.
- W2891711161 creator A5080805825 @default.
- W2891711161 date "2019-11-01" @default.
- W2891711161 modified "2023-10-17" @default.
- W2891711161 title "Deep Principal Component Analysis Based on Layerwise Feature Extraction and Its Application to Nonlinear Process Monitoring" @default.
- W2891711161 cites W1855879034 @default.
- W2891711161 cites W1966863755 @default.
- W2891711161 cites W1970002409 @default.
- W2891711161 cites W1970537494 @default.
- W2891711161 cites W1974156558 @default.
- W2891711161 cites W1984672166 @default.
- W2891711161 cites W1987782678 @default.
- W2891711161 cites W1988455509 @default.
- W2891711161 cites W1992844383 @default.
- W2891711161 cites W1994505190 @default.
- W2891711161 cites W1995357300 @default.
- W2891711161 cites W1996980808 @default.
- W2891711161 cites W1997208277 @default.
- W2891711161 cites W1998162709 @default.
- W2891711161 cites W1998399571 @default.
- W2891711161 cites W1999047277 @default.
- W2891711161 cites W2004186751 @default.
- W2891711161 cites W2009700261 @default.
- W2891711161 cites W2014619221 @default.
- W2891711161 cites W2035221948 @default.
- W2891711161 cites W2038180527 @default.
- W2891711161 cites W2051940462 @default.
- W2891711161 cites W2063823978 @default.
- W2891711161 cites W2068193536 @default.
- W2891711161 cites W2076785055 @default.
- W2891711161 cites W2076997107 @default.
- W2891711161 cites W2077791644 @default.
- W2891711161 cites W2081136649 @default.
- W2891711161 cites W2086410427 @default.
- W2891711161 cites W2088540877 @default.
- W2891711161 cites W2100495367 @default.
- W2891711161 cites W2110998784 @default.
- W2891711161 cites W2124191995 @default.
- W2891711161 cites W2127358663 @default.
- W2891711161 cites W2138409105 @default.
- W2891711161 cites W2140095548 @default.
- W2891711161 cites W2140327685 @default.
- W2891711161 cites W2155694896 @default.
- W2891711161 cites W2163922914 @default.
- W2891711161 cites W2169511673 @default.
- W2891711161 cites W2170447682 @default.
- W2891711161 cites W2171247088 @default.
- W2891711161 cites W219084219 @default.
- W2891711161 cites W2293548403 @default.
- W2891711161 cites W2296641122 @default.
- W2891711161 cites W2299543730 @default.
- W2891711161 cites W2317965018 @default.
- W2891711161 cites W2321185479 @default.
- W2891711161 cites W2344552205 @default.
- W2891711161 cites W2344745309 @default.
- W2891711161 cites W2418363708 @default.
- W2891711161 cites W2563202971 @default.
- W2891711161 cites W2757109865 @default.
- W2891711161 cites W2759373267 @default.
- W2891711161 cites W2919115771 @default.
- W2891711161 cites W4249625715 @default.
- W2891711161 cites W4251645482 @default.
- W2891711161 doi "https://doi.org/10.1109/tcst.2018.2865413" @default.
- W2891711161 hasPublicationYear "2019" @default.
- W2891711161 type Work @default.
- W2891711161 sameAs 2891711161 @default.
- W2891711161 citedByCount "55" @default.
- W2891711161 countsByYear W28917111612019 @default.
- W2891711161 countsByYear W28917111612020 @default.
- W2891711161 countsByYear W28917111612021 @default.
- W2891711161 countsByYear W28917111612022 @default.
- W2891711161 countsByYear W28917111612023 @default.
- W2891711161 crossrefType "journal-article" @default.
- W2891711161 hasAuthorship W2891711161A5002319878 @default.
- W2891711161 hasAuthorship W2891711161A5067133312 @default.
- W2891711161 hasAuthorship W2891711161A5078024858 @default.
- W2891711161 hasAuthorship W2891711161A5080805825 @default.
- W2891711161 hasConcept C111919701 @default.
- W2891711161 hasConcept C121332964 @default.
- W2891711161 hasConcept C153180895 @default.
- W2891711161 hasConcept C154945302 @default.
- W2891711161 hasConcept C158622935 @default.
- W2891711161 hasConcept C168167062 @default.
- W2891711161 hasConcept C27438332 @default.
- W2891711161 hasConcept C41008148 @default.
- W2891711161 hasConcept C52622490 @default.
- W2891711161 hasConcept C62520636 @default.
- W2891711161 hasConcept C97355855 @default.
- W2891711161 hasConcept C98045186 @default.
- W2891711161 hasConceptScore W2891711161C111919701 @default.
- W2891711161 hasConceptScore W2891711161C121332964 @default.
- W2891711161 hasConceptScore W2891711161C153180895 @default.
- W2891711161 hasConceptScore W2891711161C154945302 @default.
- W2891711161 hasConceptScore W2891711161C158622935 @default.