Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891713085> ?p ?o ?g. }
- W2891713085 endingPage "2046" @default.
- W2891713085 startingPage "2036" @default.
- W2891713085 abstract "The direct transformation of C-H bonds into diverse functional groups represents one of the most atom- and step-economical strategies for organic synthesis and has received substantial attention over the last few decades. Despite recent advances, asymmetric C-H bond functionalizations are less developed, especially asymmetric oxidations of sp3 C-H bonds. Inspired by enzyme (e.g., P450) catalysis, chemists have made great efforts to develop non-enzymatic systems for enantioselective oxidations of sp3 C-H bonds. However, the involvement of highly reactive radical intermediates makes enantioselective transformations extremely challenging. In this Account, we present our recent studies on the enantioselective induction of prochiral benzylic radicals using a chiral bisoxazoline (Box)/Cu catalytic system. This reaction system was developed on the basis of our extensive studies of copper-catalyzed intermolecular alkene difunctionalizations, such as azidotrifluoromethylations, trifluoromethylcyanations, and trifluoromethylarylations. In these reactions, the proposed catalytic cycle starts from the oxidation of the Cu(I) species by the activated Togni-I reagent (via a Lewis acid/base interaction with a silyl reagent or arylboronic acid) through a single electron transfer process. The generated CF3 radical can efficiently add to the alkene, and the resultant carbon-centered radical is subsequently trapped by an active Cu(II) species bearing a nucleophile (e.g., an N3, CN, or Ar moiety) to form a new C-heteroatom or C-C bond and regenerate the Cu(I) catalyst. Kinetic studies of the trifluoromethylarylation of alkenes support a Cu(I/II/III) catalytic cycle in which the carbon radical reacts with the Cu(II) species to form a highly reactive Cu(III) intermediate and its reductive elimination contributes to the final bond formation. This assumption inspired us to explore asymmetric radical transformations by introducing chiral ligands. Enantioselective cyanations and arylations of benzylic radicals have been demonstrated in the presence of chiral Box/Cu(I) catalysts, and a series of asymmetric difunctionalizations of styrenes have been successfully achieved. In addition, by means of the same benzylic radical trapping process, enantioselective decarboxylative cyanations have been demonstrated using a cooperative photocatalysis and copper catalysis system. Compared with radical addition and decarboxylative processes, hydrogen atom abstraction (HAA) provides direct and facile access to benzylic radicals. By using bisbenzenesulfonimidyl radical for HAA, our group has developed an enantioselective cyanation of benzylic C-H bonds via a copper-catalyzed radical relay, and excellent reactivity and enantioselectivity were achieved in the presence of chiral Box/Cu(I) catalysts. In addition, a regioselective benzylic C-H bond arylation proceeding through a similar process was also developed, providing simple access to 1,1-diarylalkanes. Notably, alkyl arenes were used as the limiting reagent in these reactions, which allowed the late-stage functionalization of sp3 C-H bonds in complex molecules, including natural products, pharmaceuticals, and agrochemicals." @default.
- W2891713085 created "2018-09-27" @default.
- W2891713085 creator A5001573477 @default.
- W2891713085 creator A5055508803 @default.
- W2891713085 creator A5077272675 @default.
- W2891713085 date "2018-09-05" @default.
- W2891713085 modified "2023-10-18" @default.
- W2891713085 title "Copper-Catalyzed Radical Relay for Asymmetric Radical Transformations" @default.
- W2891713085 cites W1968752144 @default.
- W2891713085 cites W1971110482 @default.
- W2891713085 cites W1977119201 @default.
- W2891713085 cites W1977868435 @default.
- W2891713085 cites W1981390016 @default.
- W2891713085 cites W1982848013 @default.
- W2891713085 cites W1984232099 @default.
- W2891713085 cites W1996438907 @default.
- W2891713085 cites W1999767542 @default.
- W2891713085 cites W2001911836 @default.
- W2891713085 cites W2006366991 @default.
- W2891713085 cites W2006755368 @default.
- W2891713085 cites W2007708141 @default.
- W2891713085 cites W2010956882 @default.
- W2891713085 cites W2020005042 @default.
- W2891713085 cites W2020128887 @default.
- W2891713085 cites W2023056883 @default.
- W2891713085 cites W2034332749 @default.
- W2891713085 cites W2036557488 @default.
- W2891713085 cites W2041561257 @default.
- W2891713085 cites W2043420962 @default.
- W2891713085 cites W2043760831 @default.
- W2891713085 cites W2045617956 @default.
- W2891713085 cites W2047648221 @default.
- W2891713085 cites W2051778076 @default.
- W2891713085 cites W2052498384 @default.
- W2891713085 cites W2057692360 @default.
- W2891713085 cites W2061142370 @default.
- W2891713085 cites W2063913713 @default.
- W2891713085 cites W2066309940 @default.
- W2891713085 cites W2076655264 @default.
- W2891713085 cites W2090560403 @default.
- W2891713085 cites W2109424254 @default.
- W2891713085 cites W2115824676 @default.
- W2891713085 cites W2124015077 @default.
- W2891713085 cites W2129652151 @default.
- W2891713085 cites W2131703320 @default.
- W2891713085 cites W2140158011 @default.
- W2891713085 cites W2140897627 @default.
- W2891713085 cites W2142814113 @default.
- W2891713085 cites W2159451226 @default.
- W2891713085 cites W2278002274 @default.
- W2891713085 cites W2298506509 @default.
- W2891713085 cites W2312964059 @default.
- W2891713085 cites W2318384131 @default.
- W2891713085 cites W2318461157 @default.
- W2891713085 cites W2322201777 @default.
- W2891713085 cites W2324385177 @default.
- W2891713085 cites W2325684037 @default.
- W2891713085 cites W2325742566 @default.
- W2891713085 cites W2332643552 @default.
- W2891713085 cites W2333173815 @default.
- W2891713085 cites W2379591351 @default.
- W2891713085 cites W2473622289 @default.
- W2891713085 cites W2515068481 @default.
- W2891713085 cites W2531917873 @default.
- W2891713085 cites W2552416281 @default.
- W2891713085 cites W2558650956 @default.
- W2891713085 cites W2580403504 @default.
- W2891713085 cites W2583627348 @default.
- W2891713085 cites W2586877512 @default.
- W2891713085 cites W2588060816 @default.
- W2891713085 cites W2610341741 @default.
- W2891713085 cites W2617165743 @default.
- W2891713085 cites W2618057552 @default.
- W2891713085 cites W2618176530 @default.
- W2891713085 cites W264949057 @default.
- W2891713085 cites W2762283952 @default.
- W2891713085 cites W2765308013 @default.
- W2891713085 cites W2778341989 @default.
- W2891713085 cites W2951839513 @default.
- W2891713085 cites W2952229228 @default.
- W2891713085 cites W4205216182 @default.
- W2891713085 cites W4248924507 @default.
- W2891713085 cites W4255764754 @default.
- W2891713085 cites W4361808068 @default.
- W2891713085 cites W4362204967 @default.
- W2891713085 cites W4376490580 @default.
- W2891713085 cites W855726754 @default.
- W2891713085 doi "https://doi.org/10.1021/acs.accounts.8b00265" @default.
- W2891713085 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30183262" @default.
- W2891713085 hasPublicationYear "2018" @default.
- W2891713085 type Work @default.
- W2891713085 sameAs 2891713085 @default.
- W2891713085 citedByCount "385" @default.
- W2891713085 countsByYear W28917130852018 @default.
- W2891713085 countsByYear W28917130852019 @default.
- W2891713085 countsByYear W28917130852020 @default.
- W2891713085 countsByYear W28917130852021 @default.
- W2891713085 countsByYear W28917130852022 @default.