Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891718913> ?p ?o ?g. }
- W2891718913 endingPage "196" @default.
- W2891718913 startingPage "189" @default.
- W2891718913 abstract "The application of machine learning in medicine has been productive in multiple fields, but has not previously been applied to analyze the complexity of organ involvement by chronic graft-versus-host disease. Chronic graft-versus-host disease is classified by an overall composite score as mild, moderate or severe, which may overlook clinically relevant patterns in organ involvement. Here we applied a novel computational approach to chronic graft-versus-host disease with the goal of identifying phenotypic groups based on the subcomponents of the National Institutes of Health Consensus Criteria. Computational analysis revealed seven distinct groups of patients with contrasting clinical risks. The high-risk group had an inferior overall survival compared to the low-risk group (hazard ratio 2.24; 95% confidence interval: 1.36-3.68), an effect that was independent of graft-versus-host disease severity as measured by the National Institutes of Health criteria. To test clinical applicability, knowledge was translated into a simplified clinical prognostic decision tree. Groups identified by the decision tree also stratified outcomes and closely matched those from the original analysis. Patients in the high- and intermediate-risk decision-tree groups had significantly shorter overall survival than those in the low-risk group (hazard ratio 2.79; 95% confidence interval: 1.58-4.91 and hazard ratio 1.78; 95% confidence interval: 1.06-3.01, respectively). Machine learning and other computational analyses may better reveal biomarkers and stratify risk than the current approach based on cumulative severity. This approach could now be explored in other disease models with complex clinical phenotypes. External validation must be completed prior to clinical application. Ultimately, this approach has the potential to reveal distinct pathophysiological mechanisms that may underlie clusters. Clinicaltrials.gov identifier: NCT00637689." @default.
- W2891718913 created "2018-09-27" @default.
- W2891718913 creator A5007983797 @default.
- W2891718913 creator A5013004380 @default.
- W2891718913 creator A5014043233 @default.
- W2891718913 creator A5022905972 @default.
- W2891718913 creator A5029278364 @default.
- W2891718913 creator A5031390636 @default.
- W2891718913 creator A5035905546 @default.
- W2891718913 creator A5040815890 @default.
- W2891718913 creator A5048197375 @default.
- W2891718913 creator A5054714265 @default.
- W2891718913 creator A5055700886 @default.
- W2891718913 creator A5070008988 @default.
- W2891718913 creator A5070114395 @default.
- W2891718913 date "2018-09-20" @default.
- W2891718913 modified "2023-10-02" @default.
- W2891718913 title "Machine learning reveals chronic graft-<i>versus</i>-host disease phenotypes and stratifies survival after stem cell transplant for hematologic malignancies" @default.
- W2891718913 cites W1837735899 @default.
- W2891718913 cites W1974318625 @default.
- W2891718913 cites W1982729887 @default.
- W2891718913 cites W1993835819 @default.
- W2891718913 cites W2031426920 @default.
- W2891718913 cites W2042951970 @default.
- W2891718913 cites W2069388901 @default.
- W2891718913 cites W2080200044 @default.
- W2891718913 cites W2093591139 @default.
- W2891718913 cites W2111276737 @default.
- W2891718913 cites W2121293017 @default.
- W2891718913 cites W2170334907 @default.
- W2891718913 cites W2177870565 @default.
- W2891718913 cites W2379365975 @default.
- W2891718913 cites W2396827761 @default.
- W2891718913 cites W2429621985 @default.
- W2891718913 cites W2461073387 @default.
- W2891718913 cites W2528448343 @default.
- W2891718913 cites W2580658028 @default.
- W2891718913 cites W2581082771 @default.
- W2891718913 cites W2586256617 @default.
- W2891718913 cites W2618073389 @default.
- W2891718913 cites W2751359244 @default.
- W2891718913 cites W2772246530 @default.
- W2891718913 cites W2772723798 @default.
- W2891718913 cites W2777794149 @default.
- W2891718913 cites W2792985650 @default.
- W2891718913 cites W2808452273 @default.
- W2891718913 cites W312480887 @default.
- W2891718913 cites W4246682656 @default.
- W2891718913 cites W4249086146 @default.
- W2891718913 doi "https://doi.org/10.3324/haematol.2018.193441" @default.
- W2891718913 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6312024" @default.
- W2891718913 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30237265" @default.
- W2891718913 hasPublicationYear "2018" @default.
- W2891718913 type Work @default.
- W2891718913 sameAs 2891718913 @default.
- W2891718913 citedByCount "40" @default.
- W2891718913 countsByYear W28917189132019 @default.
- W2891718913 countsByYear W28917189132020 @default.
- W2891718913 countsByYear W28917189132021 @default.
- W2891718913 countsByYear W28917189132022 @default.
- W2891718913 countsByYear W28917189132023 @default.
- W2891718913 crossrefType "journal-article" @default.
- W2891718913 hasAuthorship W2891718913A5007983797 @default.
- W2891718913 hasAuthorship W2891718913A5013004380 @default.
- W2891718913 hasAuthorship W2891718913A5014043233 @default.
- W2891718913 hasAuthorship W2891718913A5022905972 @default.
- W2891718913 hasAuthorship W2891718913A5029278364 @default.
- W2891718913 hasAuthorship W2891718913A5031390636 @default.
- W2891718913 hasAuthorship W2891718913A5035905546 @default.
- W2891718913 hasAuthorship W2891718913A5040815890 @default.
- W2891718913 hasAuthorship W2891718913A5048197375 @default.
- W2891718913 hasAuthorship W2891718913A5054714265 @default.
- W2891718913 hasAuthorship W2891718913A5055700886 @default.
- W2891718913 hasAuthorship W2891718913A5070008988 @default.
- W2891718913 hasAuthorship W2891718913A5070114395 @default.
- W2891718913 hasBestOaLocation W28917189131 @default.
- W2891718913 hasConcept C119857082 @default.
- W2891718913 hasConcept C126322002 @default.
- W2891718913 hasConcept C143998085 @default.
- W2891718913 hasConcept C207103383 @default.
- W2891718913 hasConcept C2779134260 @default.
- W2891718913 hasConcept C41008148 @default.
- W2891718913 hasConcept C44249647 @default.
- W2891718913 hasConcept C71924100 @default.
- W2891718913 hasConcept C84525736 @default.
- W2891718913 hasConceptScore W2891718913C119857082 @default.
- W2891718913 hasConceptScore W2891718913C126322002 @default.
- W2891718913 hasConceptScore W2891718913C143998085 @default.
- W2891718913 hasConceptScore W2891718913C207103383 @default.
- W2891718913 hasConceptScore W2891718913C2779134260 @default.
- W2891718913 hasConceptScore W2891718913C41008148 @default.
- W2891718913 hasConceptScore W2891718913C44249647 @default.
- W2891718913 hasConceptScore W2891718913C71924100 @default.
- W2891718913 hasConceptScore W2891718913C84525736 @default.
- W2891718913 hasIssue "1" @default.
- W2891718913 hasLocation W28917189131 @default.
- W2891718913 hasLocation W28917189132 @default.
- W2891718913 hasLocation W28917189133 @default.