Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891720232> ?p ?o ?g. }
- W2891720232 abstract "High-throughput data acquisition in synthetic biology leads to an abundance of data that need to be processed and aggregated into useful biological models. Building dynamical models based on this wealth of data is of paramount importance to understand and optimize designs of synthetic biology constructs. However, building models manually for each data set is inconvenient and might become infeasible for highly complex synthetic systems. In this paper, we present state-of-the-art system identification techniques and combine them with chemical reaction network theory (CRNT) to generate dynamic models automatically. On the system identification side, Sparse Bayesian Learning offers methods to learn from data the sparsest set of dictionary functions necessary to capture the dynamics of the system into ODE models; on the CRNT side, building on such sparse ODE models, all possible network structures within a given parameter uncertainty region can be computed. Additionally, the system identification process can be complemented with constraints on the parameters to, for example, enforce stability or non-negativity-thus offering relevant physical constraints over the possible network structures. In this way, the wealth of data can be translated into biologically relevant network structures, which then steers the data acquisition, thereby providing a vital step for closed-loop system identification." @default.
- W2891720232 created "2018-09-27" @default.
- W2891720232 creator A5046184588 @default.
- W2891720232 creator A5052164947 @default.
- W2891720232 date "2018-12-01" @default.
- W2891720232 modified "2023-09-26" @default.
- W2891720232 title "Characterization of Biologically Relevant Network Structures form Time-series Data" @default.
- W2891720232 cites W1556001544 @default.
- W2891720232 cites W1638844320 @default.
- W2891720232 cites W1648445109 @default.
- W2891720232 cites W1688598871 @default.
- W2891720232 cites W1965324089 @default.
- W2891720232 cites W1967278545 @default.
- W2891720232 cites W1979769287 @default.
- W2891720232 cites W1988741929 @default.
- W2891720232 cites W2028773706 @default.
- W2891720232 cites W2034787898 @default.
- W2891720232 cites W2038006683 @default.
- W2891720232 cites W2045887127 @default.
- W2891720232 cites W2056816090 @default.
- W2891720232 cites W2066718612 @default.
- W2891720232 cites W2094781369 @default.
- W2891720232 cites W2107861471 @default.
- W2891720232 cites W2127870457 @default.
- W2891720232 cites W2136870201 @default.
- W2891720232 cites W2143151266 @default.
- W2891720232 cites W2144366961 @default.
- W2891720232 cites W2171980229 @default.
- W2891720232 cites W2239232218 @default.
- W2891720232 cites W2276916781 @default.
- W2891720232 cites W2307536232 @default.
- W2891720232 cites W2401439624 @default.
- W2891720232 cites W2567887394 @default.
- W2891720232 cites W2593673887 @default.
- W2891720232 cites W2611053392 @default.
- W2891720232 cites W2949298559 @default.
- W2891720232 cites W2962759581 @default.
- W2891720232 cites W2963183467 @default.
- W2891720232 cites W2963624025 @default.
- W2891720232 cites W358845739 @default.
- W2891720232 cites W615876487 @default.
- W2891720232 doi "https://doi.org/10.1109/cdc.2018.8619360" @default.
- W2891720232 hasPublicationYear "2018" @default.
- W2891720232 type Work @default.
- W2891720232 sameAs 2891720232 @default.
- W2891720232 citedByCount "3" @default.
- W2891720232 countsByYear W28917202322019 @default.
- W2891720232 crossrefType "proceedings-article" @default.
- W2891720232 hasAuthorship W2891720232A5046184588 @default.
- W2891720232 hasAuthorship W2891720232A5052164947 @default.
- W2891720232 hasBestOaLocation W28917202322 @default.
- W2891720232 hasConcept C111919701 @default.
- W2891720232 hasConcept C112972136 @default.
- W2891720232 hasConcept C114614502 @default.
- W2891720232 hasConcept C116834253 @default.
- W2891720232 hasConcept C119247159 @default.
- W2891720232 hasConcept C119857082 @default.
- W2891720232 hasConcept C124101348 @default.
- W2891720232 hasConcept C151406439 @default.
- W2891720232 hasConcept C154945302 @default.
- W2891720232 hasConcept C160920958 @default.
- W2891720232 hasConcept C177264268 @default.
- W2891720232 hasConcept C199360897 @default.
- W2891720232 hasConcept C201797286 @default.
- W2891720232 hasConcept C2780009758 @default.
- W2891720232 hasConcept C28225019 @default.
- W2891720232 hasConcept C28826006 @default.
- W2891720232 hasConcept C33724603 @default.
- W2891720232 hasConcept C33923547 @default.
- W2891720232 hasConcept C34862557 @default.
- W2891720232 hasConcept C41008148 @default.
- W2891720232 hasConcept C54355233 @default.
- W2891720232 hasConcept C59822182 @default.
- W2891720232 hasConcept C82142266 @default.
- W2891720232 hasConcept C86803240 @default.
- W2891720232 hasConcept C98045186 @default.
- W2891720232 hasConceptScore W2891720232C111919701 @default.
- W2891720232 hasConceptScore W2891720232C112972136 @default.
- W2891720232 hasConceptScore W2891720232C114614502 @default.
- W2891720232 hasConceptScore W2891720232C116834253 @default.
- W2891720232 hasConceptScore W2891720232C119247159 @default.
- W2891720232 hasConceptScore W2891720232C119857082 @default.
- W2891720232 hasConceptScore W2891720232C124101348 @default.
- W2891720232 hasConceptScore W2891720232C151406439 @default.
- W2891720232 hasConceptScore W2891720232C154945302 @default.
- W2891720232 hasConceptScore W2891720232C160920958 @default.
- W2891720232 hasConceptScore W2891720232C177264268 @default.
- W2891720232 hasConceptScore W2891720232C199360897 @default.
- W2891720232 hasConceptScore W2891720232C201797286 @default.
- W2891720232 hasConceptScore W2891720232C2780009758 @default.
- W2891720232 hasConceptScore W2891720232C28225019 @default.
- W2891720232 hasConceptScore W2891720232C28826006 @default.
- W2891720232 hasConceptScore W2891720232C33724603 @default.
- W2891720232 hasConceptScore W2891720232C33923547 @default.
- W2891720232 hasConceptScore W2891720232C34862557 @default.
- W2891720232 hasConceptScore W2891720232C41008148 @default.
- W2891720232 hasConceptScore W2891720232C54355233 @default.
- W2891720232 hasConceptScore W2891720232C59822182 @default.
- W2891720232 hasConceptScore W2891720232C82142266 @default.
- W2891720232 hasConceptScore W2891720232C86803240 @default.