Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891721126> ?p ?o ?g. }
- W2891721126 endingPage "53" @default.
- W2891721126 startingPage "28" @default.
- W2891721126 abstract "The numerical simulation of two-fluid flows with sharp interfaces is a challenging field, not only because of their complicated physical mechanisms, but also because of increased computational cost. An efficient and robust numerical formulation for incompressible two-fluid flows is proposed. Its novelty is the consistent coupling of Fast Direct Solvers (FDS) with the Immersed Boundary (IB) method to represent solid boundaries. Such a coupling offers several advantages. First, it extends the range of applicability of the IB method. Second, it allows the simulation of practical problems in geometrically complicated domains at a significantly reduced cost. Third, it can shed light on regions of the parametric space which are considered out of reach, or even impossible today. Instead of using a conventional variable coefficient pressure Poisson equation, a pressure-correction scheme is suggested for the solution of a constant coefficient Poisson equation for the pressure difference, extending the novel work of Dodd and Ferrante [8]. The conservative Level-set (LS) method is used to track the interface between the two fluids. Appropriate schemes, based on the local directional Ghost Cell Approach (GCA) are proposed, in order to satisfy the boundary conditions (BCs) of the pressure and the LS function around the IB. The accuracy, robustness, and performance of the proposed method is demonstrated by several validations against conventional approaches and experiments. The results verify that the pressure BCs are properly recovered along the IB solid interface, while a non-smooth pressure field is also allowed across the solid obstacle. The accuracy of the method was found to be 2nd-order, both in time and space. The performance of the proposed method is compared against the conventional approach using a multigrid iterative solver. The impact of the time-step on the accuracy of the constant coefficient approach is examined. Results show that the final speed-up strongly depends on the specific physical and numerical parameters such as the density ratio or the Reynolds number. It is demonstrated that for the range of parameters examined, speed-up factors of 100–10 can be achieved for density ratios of 10–1000 respectively." @default.
- W2891721126 created "2018-09-27" @default.
- W2891721126 creator A5042641700 @default.
- W2891721126 creator A5080847042 @default.
- W2891721126 date "2019-01-01" @default.
- W2891721126 modified "2023-09-30" @default.
- W2891721126 title "An efficient method for two-fluid incompressible flows appropriate for the immersed boundary method" @default.
- W2891721126 cites W1964610841 @default.
- W2891721126 cites W1964732682 @default.
- W2891721126 cites W1964885918 @default.
- W2891721126 cites W1968146709 @default.
- W2891721126 cites W1979655878 @default.
- W2891721126 cites W1984426476 @default.
- W2891721126 cites W1989203959 @default.
- W2891721126 cites W1991113069 @default.
- W2891721126 cites W1994880571 @default.
- W2891721126 cites W1997815093 @default.
- W2891721126 cites W2004277410 @default.
- W2891721126 cites W2006247954 @default.
- W2891721126 cites W2012019285 @default.
- W2891721126 cites W2012063891 @default.
- W2891721126 cites W2019201047 @default.
- W2891721126 cites W2023248330 @default.
- W2891721126 cites W2023448378 @default.
- W2891721126 cites W2023603353 @default.
- W2891721126 cites W2025291279 @default.
- W2891721126 cites W2025526962 @default.
- W2891721126 cites W2025610129 @default.
- W2891721126 cites W2029725852 @default.
- W2891721126 cites W2030070323 @default.
- W2891721126 cites W2032534690 @default.
- W2891721126 cites W2040273578 @default.
- W2891721126 cites W2045545335 @default.
- W2891721126 cites W2058161433 @default.
- W2891721126 cites W2065190857 @default.
- W2891721126 cites W2066222663 @default.
- W2891721126 cites W2067073138 @default.
- W2891721126 cites W2073282310 @default.
- W2891721126 cites W2076077791 @default.
- W2891721126 cites W2077312560 @default.
- W2891721126 cites W2079462648 @default.
- W2891721126 cites W2086681684 @default.
- W2891721126 cites W2099868671 @default.
- W2891721126 cites W2100837814 @default.
- W2891721126 cites W2101560656 @default.
- W2891721126 cites W2118922968 @default.
- W2891721126 cites W2153331623 @default.
- W2891721126 cites W2158900113 @default.
- W2891721126 cites W2159268266 @default.
- W2891721126 cites W2520340833 @default.
- W2891721126 cites W2582833752 @default.
- W2891721126 cites W2798757171 @default.
- W2891721126 cites W3010292040 @default.
- W2891721126 cites W4237205460 @default.
- W2891721126 doi "https://doi.org/10.1016/j.jcp.2018.09.035" @default.
- W2891721126 hasPublicationYear "2019" @default.
- W2891721126 type Work @default.
- W2891721126 sameAs 2891721126 @default.
- W2891721126 citedByCount "15" @default.
- W2891721126 countsByYear W28917211262019 @default.
- W2891721126 countsByYear W28917211262020 @default.
- W2891721126 countsByYear W28917211262021 @default.
- W2891721126 countsByYear W28917211262022 @default.
- W2891721126 countsByYear W28917211262023 @default.
- W2891721126 crossrefType "journal-article" @default.
- W2891721126 hasAuthorship W2891721126A5042641700 @default.
- W2891721126 hasAuthorship W2891721126A5080847042 @default.
- W2891721126 hasConcept C104317684 @default.
- W2891721126 hasConcept C105795698 @default.
- W2891721126 hasConcept C117251300 @default.
- W2891721126 hasConcept C121332964 @default.
- W2891721126 hasConcept C121704545 @default.
- W2891721126 hasConcept C126255220 @default.
- W2891721126 hasConcept C134306372 @default.
- W2891721126 hasConcept C182310444 @default.
- W2891721126 hasConcept C185592680 @default.
- W2891721126 hasConcept C28826006 @default.
- W2891721126 hasConcept C33923547 @default.
- W2891721126 hasConcept C41008148 @default.
- W2891721126 hasConcept C55493867 @default.
- W2891721126 hasConcept C57879066 @default.
- W2891721126 hasConcept C62354387 @default.
- W2891721126 hasConcept C63479239 @default.
- W2891721126 hasConcept C84655787 @default.
- W2891721126 hasConcept C96716743 @default.
- W2891721126 hasConceptScore W2891721126C104317684 @default.
- W2891721126 hasConceptScore W2891721126C105795698 @default.
- W2891721126 hasConceptScore W2891721126C117251300 @default.
- W2891721126 hasConceptScore W2891721126C121332964 @default.
- W2891721126 hasConceptScore W2891721126C121704545 @default.
- W2891721126 hasConceptScore W2891721126C126255220 @default.
- W2891721126 hasConceptScore W2891721126C134306372 @default.
- W2891721126 hasConceptScore W2891721126C182310444 @default.
- W2891721126 hasConceptScore W2891721126C185592680 @default.
- W2891721126 hasConceptScore W2891721126C28826006 @default.
- W2891721126 hasConceptScore W2891721126C33923547 @default.
- W2891721126 hasConceptScore W2891721126C41008148 @default.
- W2891721126 hasConceptScore W2891721126C55493867 @default.