Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891723405> ?p ?o ?g. }
- W2891723405 endingPage "1407" @default.
- W2891723405 startingPage "1407" @default.
- W2891723405 abstract "Characterizing the land surface temperature (LST) and its diurnal cycle is important in understanding a range of surface properties, including soil moisture status, evaporative response, vegetation stress and ground heat flux. While remote-sensing platforms present a number of options to retrieve this variable, there are inevitable compromises between the resolvable spatial and temporal resolution. For instance, the spatial resolution of geostationary satellites, which can provide sub-hourly LST, is often too coarse (3 km) for many applications. On the other hand, higher-resolution polar orbiting satellites are generally infrequent in time, with return intervals on the order of weeks, limiting their capacity to capture surface dynamics. With recent developments in the application of unmanned aerial vehicles (UAVs), there is now the opportunity to collect LST measurements on demand and at ultra-high spatial resolution. Here, we detail the collection and analysis of a UAV-based LST dataset, with the purpose of examining the diurnal surface temperature response: something that has not been possible from traditional satellite platforms at these scales. Two separate campaigns were conducted over a bare desert surface in combination with either Rhodes grass or a recently harvested maize field. In both cases, thermal imagery was collected between 0800 and 1700 local solar time. The UAV-based diurnal cycle was consistent with ground-based measurements, with a mean correlation coefficient and root mean square error (RMSE) of 0.99 and 0.68 °C, respectively. LST retrieved over the grass surface presented the best results, with an RMSE of 0.45 °C compared to 0.67 °C for the single desert site and 1.28 °C for the recently harvested maize surface. Even considering the orders of magnitude difference in scale, an exploratory analysis comparing retrievals of the UAV-based diurnal cycle with METEOSAT geostationary data yielded pleasing results (R = 0.98; RMSE = 1.23 °C). Overall, our analysis revealed a diurnal range over the desert and maize surfaces of ~20 °C and ~17 °C respectively, while the grass showed a reduced amplitude of ~12 °C. Considerable heterogeneity was observed over the grass surface at the peak of the diurnal cycle, which was likely indicative of the varying crop water status. To our knowledge, this study presents the first spatially varying analysis of the diurnal LST captured at ultra-high resolution, from any remote platform. Our findings highlight the considerable potential to utilize UAV-based retrievals to enhance investigations across multi-disciplinary studies in agriculture, hydrology and land-atmosphere investigations." @default.
- W2891723405 created "2018-09-27" @default.
- W2891723405 creator A5042355480 @default.
- W2891723405 creator A5050716420 @default.
- W2891723405 creator A5059369570 @default.
- W2891723405 creator A5073514479 @default.
- W2891723405 creator A5075555774 @default.
- W2891723405 date "2018-09-05" @default.
- W2891723405 modified "2023-10-14" @default.
- W2891723405 title "Capturing the Diurnal Cycle of Land Surface Temperature Using an Unmanned Aerial Vehicle" @default.
- W2891723405 cites W1537239506 @default.
- W2891723405 cites W1966928556 @default.
- W2891723405 cites W1968565953 @default.
- W2891723405 cites W1993098669 @default.
- W2891723405 cites W2006273284 @default.
- W2891723405 cites W2006953401 @default.
- W2891723405 cites W2008188833 @default.
- W2891723405 cites W2012816307 @default.
- W2891723405 cites W2016911662 @default.
- W2891723405 cites W2023138554 @default.
- W2891723405 cites W2025757612 @default.
- W2891723405 cites W2026337749 @default.
- W2891723405 cites W2027254180 @default.
- W2891723405 cites W2033600080 @default.
- W2891723405 cites W2034935392 @default.
- W2891723405 cites W2041570083 @default.
- W2891723405 cites W2047277259 @default.
- W2891723405 cites W2049406224 @default.
- W2891723405 cites W2051798177 @default.
- W2891723405 cites W2057996009 @default.
- W2891723405 cites W2062982970 @default.
- W2891723405 cites W2063226188 @default.
- W2891723405 cites W2074093876 @default.
- W2891723405 cites W2074464158 @default.
- W2891723405 cites W2075818603 @default.
- W2891723405 cites W2076422641 @default.
- W2891723405 cites W2077629613 @default.
- W2891723405 cites W2077992652 @default.
- W2891723405 cites W2084466028 @default.
- W2891723405 cites W2084728102 @default.
- W2891723405 cites W2087325533 @default.
- W2891723405 cites W2091601871 @default.
- W2891723405 cites W2092088043 @default.
- W2891723405 cites W2097536090 @default.
- W2891723405 cites W2101711635 @default.
- W2891723405 cites W2103564719 @default.
- W2891723405 cites W2113034257 @default.
- W2891723405 cites W2116033926 @default.
- W2891723405 cites W2125935279 @default.
- W2891723405 cites W2129617701 @default.
- W2891723405 cites W2133125644 @default.
- W2891723405 cites W2134784594 @default.
- W2891723405 cites W2142087338 @default.
- W2891723405 cites W2153958436 @default.
- W2891723405 cites W2154044943 @default.
- W2891723405 cites W2156049446 @default.
- W2891723405 cites W2157363483 @default.
- W2891723405 cites W2159125887 @default.
- W2891723405 cites W2159889702 @default.
- W2891723405 cites W2163485644 @default.
- W2891723405 cites W2164254717 @default.
- W2891723405 cites W2166326933 @default.
- W2891723405 cites W2166516660 @default.
- W2891723405 cites W2169278316 @default.
- W2891723405 cites W2169447826 @default.
- W2891723405 cites W2170797800 @default.
- W2891723405 cites W2173707936 @default.
- W2891723405 cites W2292794918 @default.
- W2891723405 cites W2294083781 @default.
- W2891723405 cites W2297289199 @default.
- W2891723405 cites W2313938314 @default.
- W2891723405 cites W2345769133 @default.
- W2891723405 cites W2505248794 @default.
- W2891723405 cites W2528564228 @default.
- W2891723405 cites W2552941062 @default.
- W2891723405 cites W2587446396 @default.
- W2891723405 cites W2612006686 @default.
- W2891723405 cites W2744957585 @default.
- W2891723405 cites W2756033889 @default.
- W2891723405 cites W2758384568 @default.
- W2891723405 cites W2790792561 @default.
- W2891723405 cites W2793263498 @default.
- W2891723405 doi "https://doi.org/10.3390/rs10091407" @default.
- W2891723405 hasPublicationYear "2018" @default.
- W2891723405 type Work @default.
- W2891723405 sameAs 2891723405 @default.
- W2891723405 citedByCount "24" @default.
- W2891723405 countsByYear W28917234052019 @default.
- W2891723405 countsByYear W28917234052020 @default.
- W2891723405 countsByYear W28917234052021 @default.
- W2891723405 countsByYear W28917234052022 @default.
- W2891723405 countsByYear W28917234052023 @default.
- W2891723405 crossrefType "journal-article" @default.
- W2891723405 hasAuthorship W2891723405A5042355480 @default.
- W2891723405 hasAuthorship W2891723405A5050716420 @default.
- W2891723405 hasAuthorship W2891723405A5059369570 @default.
- W2891723405 hasAuthorship W2891723405A5073514479 @default.
- W2891723405 hasAuthorship W2891723405A5075555774 @default.