Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891727271> ?p ?o ?g. }
- W2891727271 endingPage "20170461" @default.
- W2891727271 startingPage "20170461" @default.
- W2891727271 abstract "Objective: Early changes in tumour behaviour following stereotactic radiosurgery) are potential biomarkers of response. To-date quantitative model-based measures of dynamic contrast-enhanced (DCE) and diffusion-weighted (DW) MRI parameters have shown widely variable findings, which may be attributable to variability in image acquisition, post-processing and analysis. Big data analytic approaches are needed for the automation of computationally intensive modelling calculations for every voxel, independent of observer interpretation. Methods: This unified platform is a voxel-based, multimodality architecture that brings complimentary solute transport processes such as perfusion and diffusion into a common framework. The methodology was tested on synthetic data and digital reference objects and consequently evaluated in patients who underwent volumetric DCE-CT, DCE-MRI and DWI-MRI scans before and after treatment. Three-dimensional pharmacokinetic parameter maps from both modalities were compared as well as the correlation between apparent diffusion coefficient (ADC) values and the extravascular, extracellular volume (Ve). Comparison of histogram parameters was done via Bland–Altman analysis, as well as Student’s t-test and Pearson’s correlation using two-sided analysis. Results: System testing on synthetic Tofts model data and digital reference objects recovered the ground truth parameters with mean relative percent error of 1.07 × 10−7 and 5.60 × 10−4 respectively. Direct voxel-to-voxel Pearson’s analysis showed statistically significant correlations between CT and MR which peaked at Day 7 for Ktrans (R = 0.74, p <= 0.0001). Statistically significant correlations were also present between ADC and Ve derived from both DCE-MRI and DCE-CT with highest median correlations found at Day 3 between median ADC and Ve,MRI values (R = 0.6, p < 0.01) The strongest correlation to DCE-CT measurements was found with DCE-MRI analysis using voxelwise T10 maps (R = 0.575, p < 0.001) instead of assigning a fixed T10 value. Conclusion: The unified implementation of multiparametric transport modelling allowed for more robust and timely observer-independent data analytics. Utility of a common analysis platform has shown higher correlations between pharmacokinetic parameters obtained from different modalities than has previously been reported. Advances in knowledge: Utility of a common analysis platform has shown statistically higher correlations between pharmacokinetic parameters obtained from different modalities than has previously been reported." @default.
- W2891727271 created "2018-09-27" @default.
- W2891727271 creator A5015137304 @default.
- W2891727271 creator A5031067031 @default.
- W2891727271 creator A5033960698 @default.
- W2891727271 creator A5063182563 @default.
- W2891727271 creator A5068477578 @default.
- W2891727271 creator A5080459908 @default.
- W2891727271 date "2019-04-01" @default.
- W2891727271 modified "2023-10-16" @default.
- W2891727271 title "Unified platform for multimodal voxel-based analysis to evaluate tumour perfusion and diffusion characteristics before and after radiation treatment evaluated in metastatic brain cancer" @default.
- W2891727271 cites W1419482780 @default.
- W2891727271 cites W1652980569 @default.
- W2891727271 cites W1676308325 @default.
- W2891727271 cites W1733885718 @default.
- W2891727271 cites W1965433403 @default.
- W2891727271 cites W1979411718 @default.
- W2891727271 cites W1982891864 @default.
- W2891727271 cites W1989199855 @default.
- W2891727271 cites W1990202749 @default.
- W2891727271 cites W1993908838 @default.
- W2891727271 cites W1994911227 @default.
- W2891727271 cites W2021939133 @default.
- W2891727271 cites W2029549604 @default.
- W2891727271 cites W2042098439 @default.
- W2891727271 cites W2053389273 @default.
- W2891727271 cites W2053686058 @default.
- W2891727271 cites W2066403358 @default.
- W2891727271 cites W2070772485 @default.
- W2891727271 cites W2089513130 @default.
- W2891727271 cites W2106648425 @default.
- W2891727271 cites W2119716977 @default.
- W2891727271 cites W2129452999 @default.
- W2891727271 cites W2135212506 @default.
- W2891727271 cites W2151682263 @default.
- W2891727271 cites W2151712868 @default.
- W2891727271 cites W2152099731 @default.
- W2891727271 cites W2156195804 @default.
- W2891727271 cites W2163577455 @default.
- W2891727271 cites W2305582452 @default.
- W2891727271 cites W2464702455 @default.
- W2891727271 cites W2589719766 @default.
- W2891727271 doi "https://doi.org/10.1259/bjr.20170461" @default.
- W2891727271 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6540849" @default.
- W2891727271 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30235004" @default.
- W2891727271 hasPublicationYear "2019" @default.
- W2891727271 type Work @default.
- W2891727271 sameAs 2891727271 @default.
- W2891727271 citedByCount "6" @default.
- W2891727271 countsByYear W28917272712019 @default.
- W2891727271 countsByYear W28917272712021 @default.
- W2891727271 countsByYear W28917272712022 @default.
- W2891727271 countsByYear W28917272712023 @default.
- W2891727271 crossrefType "journal-article" @default.
- W2891727271 hasAuthorship W2891727271A5015137304 @default.
- W2891727271 hasAuthorship W2891727271A5031067031 @default.
- W2891727271 hasAuthorship W2891727271A5033960698 @default.
- W2891727271 hasAuthorship W2891727271A5063182563 @default.
- W2891727271 hasAuthorship W2891727271A5068477578 @default.
- W2891727271 hasAuthorship W2891727271A5080459908 @default.
- W2891727271 hasBestOaLocation W28917272712 @default.
- W2891727271 hasConcept C105795698 @default.
- W2891727271 hasConcept C117220453 @default.
- W2891727271 hasConcept C126838900 @default.
- W2891727271 hasConcept C143409427 @default.
- W2891727271 hasConcept C146849305 @default.
- W2891727271 hasConcept C149550507 @default.
- W2891727271 hasConcept C153180895 @default.
- W2891727271 hasConcept C154945302 @default.
- W2891727271 hasConcept C2524010 @default.
- W2891727271 hasConcept C2989005 @default.
- W2891727271 hasConcept C33923547 @default.
- W2891727271 hasConcept C41008148 @default.
- W2891727271 hasConcept C54170458 @default.
- W2891727271 hasConcept C55078378 @default.
- W2891727271 hasConcept C70816921 @default.
- W2891727271 hasConcept C71924100 @default.
- W2891727271 hasConceptScore W2891727271C105795698 @default.
- W2891727271 hasConceptScore W2891727271C117220453 @default.
- W2891727271 hasConceptScore W2891727271C126838900 @default.
- W2891727271 hasConceptScore W2891727271C143409427 @default.
- W2891727271 hasConceptScore W2891727271C146849305 @default.
- W2891727271 hasConceptScore W2891727271C149550507 @default.
- W2891727271 hasConceptScore W2891727271C153180895 @default.
- W2891727271 hasConceptScore W2891727271C154945302 @default.
- W2891727271 hasConceptScore W2891727271C2524010 @default.
- W2891727271 hasConceptScore W2891727271C2989005 @default.
- W2891727271 hasConceptScore W2891727271C33923547 @default.
- W2891727271 hasConceptScore W2891727271C41008148 @default.
- W2891727271 hasConceptScore W2891727271C54170458 @default.
- W2891727271 hasConceptScore W2891727271C55078378 @default.
- W2891727271 hasConceptScore W2891727271C70816921 @default.
- W2891727271 hasConceptScore W2891727271C71924100 @default.
- W2891727271 hasIssue "1096" @default.
- W2891727271 hasLocation W28917272711 @default.
- W2891727271 hasLocation W28917272712 @default.
- W2891727271 hasLocation W28917272713 @default.
- W2891727271 hasLocation W28917272714 @default.