Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891727608> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2891727608 endingPage "693" @default.
- W2891727608 startingPage "683" @default.
- W2891727608 abstract "Nanjing has been listed as the one of the worst performers across China with respect to the high level of haze-fog, which impacts people’s health greatly. For the severe condition of haze-fog, PM2.5 is the main cause element of haze-fog pollution in China. So it’s necessary to forecast PM2.5 concentration accurately. In this paper, an artificial intelligence method is employed to forecast PM2.5 in Nanjing. At the data pre-processing stage, the main factors among the air pollutants (O3, NO2, SO2, CO, etc.) as well as meteorological parameters (pressure, wind direction, temperature, etc.) that affect PM2.5 are selected, and these factors of previous hours are as input data to predict PM2.5 concentration of next hours. Considering the air pollutants and meteorological data are typical time series data, a special recurrent neural network, which is called long short term memory (LSTM) network, is applied in this paper. To determine the amount of nodes in the hidden layer, a self-organizing method is used to automatically adjust the hidden nodes during the training phase. Finally, the PM2.5 concentrations of the next 1 h, 4 h, 8 h, and 12 h are predicted separately by using the self-organizing LSTM network based approach. The experimental result has been validated and compared to other algorithms, which reflects the proposed method performs best." @default.
- W2891727608 created "2018-09-27" @default.
- W2891727608 creator A5032720790 @default.
- W2891727608 creator A5035168940 @default.
- W2891727608 creator A5051534286 @default.
- W2891727608 creator A5053507255 @default.
- W2891727608 date "2018-01-01" @default.
- W2891727608 modified "2023-10-16" @default.
- W2891727608 title "A Self-organizing LSTM-Based Approach to PM2.5 Forecast" @default.
- W2891727608 cites W1538856322 @default.
- W2891727608 cites W1966188114 @default.
- W2891727608 cites W2035058881 @default.
- W2891727608 cites W2041471468 @default.
- W2891727608 cites W2044203736 @default.
- W2891727608 cites W2093711592 @default.
- W2891727608 cites W2094172643 @default.
- W2891727608 cites W2134265359 @default.
- W2891727608 cites W2192549260 @default.
- W2891727608 cites W2544558663 @default.
- W2891727608 cites W2756452389 @default.
- W2891727608 cites W956374238 @default.
- W2891727608 doi "https://doi.org/10.1007/978-3-030-00015-8_59" @default.
- W2891727608 hasPublicationYear "2018" @default.
- W2891727608 type Work @default.
- W2891727608 sameAs 2891727608 @default.
- W2891727608 citedByCount "6" @default.
- W2891727608 countsByYear W28917276082021 @default.
- W2891727608 countsByYear W28917276082022 @default.
- W2891727608 countsByYear W28917276082023 @default.
- W2891727608 crossrefType "book-chapter" @default.
- W2891727608 hasAuthorship W2891727608A5032720790 @default.
- W2891727608 hasAuthorship W2891727608A5035168940 @default.
- W2891727608 hasAuthorship W2891727608A5051534286 @default.
- W2891727608 hasAuthorship W2891727608A5053507255 @default.
- W2891727608 hasBestOaLocation W28917276082 @default.
- W2891727608 hasConcept C121332964 @default.
- W2891727608 hasConcept C153294291 @default.
- W2891727608 hasConcept C154945302 @default.
- W2891727608 hasConcept C161067210 @default.
- W2891727608 hasConcept C178790620 @default.
- W2891727608 hasConcept C185592680 @default.
- W2891727608 hasConcept C205649164 @default.
- W2891727608 hasConcept C39432304 @default.
- W2891727608 hasConcept C41008148 @default.
- W2891727608 hasConcept C50644808 @default.
- W2891727608 hasConcept C61797465 @default.
- W2891727608 hasConcept C62520636 @default.
- W2891727608 hasConcept C79974267 @default.
- W2891727608 hasConcept C82685317 @default.
- W2891727608 hasConceptScore W2891727608C121332964 @default.
- W2891727608 hasConceptScore W2891727608C153294291 @default.
- W2891727608 hasConceptScore W2891727608C154945302 @default.
- W2891727608 hasConceptScore W2891727608C161067210 @default.
- W2891727608 hasConceptScore W2891727608C178790620 @default.
- W2891727608 hasConceptScore W2891727608C185592680 @default.
- W2891727608 hasConceptScore W2891727608C205649164 @default.
- W2891727608 hasConceptScore W2891727608C39432304 @default.
- W2891727608 hasConceptScore W2891727608C41008148 @default.
- W2891727608 hasConceptScore W2891727608C50644808 @default.
- W2891727608 hasConceptScore W2891727608C61797465 @default.
- W2891727608 hasConceptScore W2891727608C62520636 @default.
- W2891727608 hasConceptScore W2891727608C79974267 @default.
- W2891727608 hasConceptScore W2891727608C82685317 @default.
- W2891727608 hasLocation W28917276081 @default.
- W2891727608 hasLocation W28917276082 @default.
- W2891727608 hasLocation W28917276083 @default.
- W2891727608 hasLocation W28917276084 @default.
- W2891727608 hasOpenAccess W2891727608 @default.
- W2891727608 hasPrimaryLocation W28917276081 @default.
- W2891727608 hasRelatedWork W2023663351 @default.
- W2891727608 hasRelatedWork W2366913456 @default.
- W2891727608 hasRelatedWork W2372220455 @default.
- W2891727608 hasRelatedWork W2379714141 @default.
- W2891727608 hasRelatedWork W2384676852 @default.
- W2891727608 hasRelatedWork W2390710324 @default.
- W2891727608 hasRelatedWork W2393814173 @default.
- W2891727608 hasRelatedWork W2984057408 @default.
- W2891727608 hasRelatedWork W4231474997 @default.
- W2891727608 hasRelatedWork W607762964 @default.
- W2891727608 isParatext "false" @default.
- W2891727608 isRetracted "false" @default.
- W2891727608 magId "2891727608" @default.
- W2891727608 workType "book-chapter" @default.