Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891736869> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2891736869 abstract "Nowadays, there are a lot of classifications models used for predictions in the software engineering field such as effort estimation and defect prediction. One of these models is the ensemble learning machine that improves model performance by combining multiple models in different ways to get a more powerful model.One of the problems facing the prediction model is the misclassification of the minority samples. This problem mainly appears in the case of defect prediction. Our aim is the classification of defects which are considered minority samples during the training phase. This can be improved by implementing the Synthetic Minority Over-Sampling Technique (SMOTE) before the implementation of the ensemble model which leads to over-sample the minority class instances.In this paper, our work propose applying a new ensemble model by combining the SMOTE technique with the heterogeneous stacking ensemble to get the most benefit and performance in training a dataset that focus on the minority subset as in the software prediction study. Our proposed model shows better performance that overcomes other techniques results applied on the minority samples of the defect prediction." @default.
- W2891736869 created "2018-09-27" @default.
- W2891736869 creator A5004386786 @default.
- W2891736869 creator A5048043632 @default.
- W2891736869 creator A5052568629 @default.
- W2891736869 date "2018-01-01" @default.
- W2891736869 modified "2023-10-04" @default.
- W2891736869 title "Using SMOTE and Heterogeneous Stacking in Ensemble learning for Software Defect Prediction" @default.
- W2891736869 cites W1984425068 @default.
- W2891736869 cites W2009786711 @default.
- W2891736869 cites W2027333824 @default.
- W2891736869 cites W2048456683 @default.
- W2891736869 cites W2087044144 @default.
- W2891736869 cites W2167917621 @default.
- W2891736869 cites W2315783906 @default.
- W2891736869 cites W2344533859 @default.
- W2891736869 cites W2391474792 @default.
- W2891736869 cites W2506821214 @default.
- W2891736869 cites W2522176866 @default.
- W2891736869 cites W2602509076 @default.
- W2891736869 cites W2604758494 @default.
- W2891736869 cites W2753860215 @default.
- W2891736869 cites W2772617084 @default.
- W2891736869 cites W320142507 @default.
- W2891736869 doi "https://doi.org/10.1145/3220267.3220286" @default.
- W2891736869 hasPublicationYear "2018" @default.
- W2891736869 type Work @default.
- W2891736869 sameAs 2891736869 @default.
- W2891736869 citedByCount "11" @default.
- W2891736869 countsByYear W28917368692019 @default.
- W2891736869 countsByYear W28917368692020 @default.
- W2891736869 countsByYear W28917368692021 @default.
- W2891736869 countsByYear W28917368692022 @default.
- W2891736869 countsByYear W28917368692023 @default.
- W2891736869 crossrefType "proceedings-article" @default.
- W2891736869 hasAuthorship W2891736869A5004386786 @default.
- W2891736869 hasAuthorship W2891736869A5048043632 @default.
- W2891736869 hasAuthorship W2891736869A5052568629 @default.
- W2891736869 hasConcept C1009929 @default.
- W2891736869 hasConcept C111919701 @default.
- W2891736869 hasConcept C119857082 @default.
- W2891736869 hasConcept C121332964 @default.
- W2891736869 hasConcept C154945302 @default.
- W2891736869 hasConcept C2777904410 @default.
- W2891736869 hasConcept C33347731 @default.
- W2891736869 hasConcept C41008148 @default.
- W2891736869 hasConcept C45942800 @default.
- W2891736869 hasConcept C46141821 @default.
- W2891736869 hasConceptScore W2891736869C1009929 @default.
- W2891736869 hasConceptScore W2891736869C111919701 @default.
- W2891736869 hasConceptScore W2891736869C119857082 @default.
- W2891736869 hasConceptScore W2891736869C121332964 @default.
- W2891736869 hasConceptScore W2891736869C154945302 @default.
- W2891736869 hasConceptScore W2891736869C2777904410 @default.
- W2891736869 hasConceptScore W2891736869C33347731 @default.
- W2891736869 hasConceptScore W2891736869C41008148 @default.
- W2891736869 hasConceptScore W2891736869C45942800 @default.
- W2891736869 hasConceptScore W2891736869C46141821 @default.
- W2891736869 hasLocation W28917368691 @default.
- W2891736869 hasOpenAccess W2891736869 @default.
- W2891736869 hasPrimaryLocation W28917368691 @default.
- W2891736869 hasRelatedWork W1985828740 @default.
- W2891736869 hasRelatedWork W2883828728 @default.
- W2891736869 hasRelatedWork W2977523147 @default.
- W2891736869 hasRelatedWork W3005055299 @default.
- W2891736869 hasRelatedWork W4200126462 @default.
- W2891736869 hasRelatedWork W4200409985 @default.
- W2891736869 hasRelatedWork W4281757034 @default.
- W2891736869 hasRelatedWork W4285741730 @default.
- W2891736869 hasRelatedWork W4292969247 @default.
- W2891736869 hasRelatedWork W4298012357 @default.
- W2891736869 isParatext "false" @default.
- W2891736869 isRetracted "false" @default.
- W2891736869 magId "2891736869" @default.
- W2891736869 workType "article" @default.