Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891745088> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2891745088 endingPage "68" @default.
- W2891745088 startingPage "59" @default.
- W2891745088 abstract "Abstract Short-term forecasting of thermal energy demand is critical to optimally manage on-site renewable energy generation and the charge and discharge of energy storage devices in district heating and cooling (DHC) systems. As part of a larger study on advanced predictive control for a solar district heating system with 52 homes – the Drake Landing Solar Community (DLSC) – this paper investigates the use of Machine Learning algorithms to predict the aggregated heating load of the community. In this study, the initial approach to estimate the heating load of the DLSC employed a piecewise linear regression based on the outdoor air temperature. Such an approach yields significant errors, in particular when weather forecasts are used instead of actual outdoor air temperature measurements. It has been found that Machine Learning algorithms, such as decision trees, can significantly improve the accuracy of predicted heating loads by incorporating the effect of additional influencing factors (e.g., time of the day, day of the week, solar radiation, etc.). In this study, the predicted heating demand obtained from different algorithms are compared under two different scenarios; (a) by using actual weather conditions from measured data; (b) by using weather forecasts. The potential implementation of such models for control purposes is discussed." @default.
- W2891745088 created "2018-09-27" @default.
- W2891745088 creator A5016196223 @default.
- W2891745088 creator A5069472469 @default.
- W2891745088 date "2018-09-01" @default.
- W2891745088 modified "2023-10-16" @default.
- W2891745088 title "Forecasting District Heating Demand using Machine Learning Algorithms" @default.
- W2891745088 cites W1720804347 @default.
- W2891745088 cites W1968839449 @default.
- W2891745088 cites W2000190106 @default.
- W2891745088 cites W2017723190 @default.
- W2891745088 cites W2020734519 @default.
- W2891745088 cites W2055603026 @default.
- W2891745088 cites W2091693228 @default.
- W2891745088 cites W2113408001 @default.
- W2891745088 cites W2549906944 @default.
- W2891745088 cites W2560599441 @default.
- W2891745088 cites W2731022017 @default.
- W2891745088 doi "https://doi.org/10.1016/j.egypro.2018.08.169" @default.
- W2891745088 hasPublicationYear "2018" @default.
- W2891745088 type Work @default.
- W2891745088 sameAs 2891745088 @default.
- W2891745088 citedByCount "49" @default.
- W2891745088 countsByYear W28917450882019 @default.
- W2891745088 countsByYear W28917450882020 @default.
- W2891745088 countsByYear W28917450882021 @default.
- W2891745088 countsByYear W28917450882022 @default.
- W2891745088 countsByYear W28917450882023 @default.
- W2891745088 crossrefType "journal-article" @default.
- W2891745088 hasAuthorship W2891745088A5016196223 @default.
- W2891745088 hasAuthorship W2891745088A5069472469 @default.
- W2891745088 hasBestOaLocation W28917450881 @default.
- W2891745088 hasConcept C11413529 @default.
- W2891745088 hasConcept C119857082 @default.
- W2891745088 hasConcept C154945302 @default.
- W2891745088 hasConcept C2983523559 @default.
- W2891745088 hasConcept C41008148 @default.
- W2891745088 hasConcept C49774154 @default.
- W2891745088 hasConceptScore W2891745088C11413529 @default.
- W2891745088 hasConceptScore W2891745088C119857082 @default.
- W2891745088 hasConceptScore W2891745088C154945302 @default.
- W2891745088 hasConceptScore W2891745088C2983523559 @default.
- W2891745088 hasConceptScore W2891745088C41008148 @default.
- W2891745088 hasConceptScore W2891745088C49774154 @default.
- W2891745088 hasLocation W28917450881 @default.
- W2891745088 hasOpenAccess W2891745088 @default.
- W2891745088 hasPrimaryLocation W28917450881 @default.
- W2891745088 hasRelatedWork W2961085424 @default.
- W2891745088 hasRelatedWork W3046775127 @default.
- W2891745088 hasRelatedWork W3107602296 @default.
- W2891745088 hasRelatedWork W3170094116 @default.
- W2891745088 hasRelatedWork W3209574120 @default.
- W2891745088 hasRelatedWork W4205958290 @default.
- W2891745088 hasRelatedWork W4286629047 @default.
- W2891745088 hasRelatedWork W4306321456 @default.
- W2891745088 hasRelatedWork W4306674287 @default.
- W2891745088 hasRelatedWork W4224009465 @default.
- W2891745088 hasVolume "149" @default.
- W2891745088 isParatext "false" @default.
- W2891745088 isRetracted "false" @default.
- W2891745088 magId "2891745088" @default.
- W2891745088 workType "article" @default.