Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891745768> ?p ?o ?g. }
- W2891745768 endingPage "5494" @default.
- W2891745768 startingPage "5467" @default.
- W2891745768 abstract "Abstract. It is well established that in Europe, high O3 concentrations are most pronounced in southern/Mediterranean countries due to the more favourable climatological conditions for its formation. However, the contribution of the different sources of precursors to O3 formation within each country relative to the imported (regional and hemispheric) O3 is poorly quantified. This lack of quantitative knowledge prevents local authorities from effectively designing plans that reduce the exceedances of the O3 target value set by the European air quality directive. O3 source attribution is a challenge because the concentration at each location and time results not only from local biogenic and anthropogenic precursors, but also from the transport of O3 and precursors from neighbouring regions, O3 regional and hemispheric transport and stratospheric O3 injections. The main goal of this study is to provide a first quantitative estimation of the contribution of the main anthropogenic activity sectors to peak O3 events in Spain relative to the contribution of imported (regional and hemispheric) O3. We also assess the potential of our source apportionment method to improve O3 modelling. Our study applies and thoroughly evaluates a countrywide O3 source apportionment method implemented in the CALIOPE air quality forecast system for Spain at high resolution (4 × 4 km2) over a 10-day period characterized by typical summer conditions in the Iberian Peninsula (IP). The method tags both O3 and its gas precursor emissions from source sectors within one simulation, and each tagged species is subject to the typical physico-chemical processes (advection, vertical mixing, deposition, emission and chemistry) as the actual conditions remain unperturbed. We quantify the individual contributions of the largest NOx local sources to high O3 concentrations compared with the contribution of imported O3. We show, for the first time, that imported O3 is the largest input to the ground-level O3 concentration in the IP, accounting for 46 %–68 % of the daily mean O3 concentration during exceedances of the European target value. The hourly imported O3 increases during typical northwestern advections (70 %–90 %, 60–80 µg m−3), and decreases during typical stagnant conditions (30 %–40 %, 30–60 µg m−3) due to the local NO titration. During stagnant conditions, the local anthropogenic precursors control the O3 peaks in areas downwind of the main urban and industrial regions (up to 40 % in hourly peaks). We also show that ground-level O3 concentrations are strongly affected by vertical mixing of O3-rich layers present in the free troposphere, which result from local/regional layering and accumulation, and continental/hemispheric transport. Indeed, vertical mixing largely explains the presence of imported O3 at ground level in the IP. Our results demonstrate the need for detailed quantification of the local and remote contributions to high O3 concentrations for local O3 management, and show O3 source apportionment to be an essential analysis prior to the design of O3 mitigation plans in any non-attainment area. Achieving the European O3 objectives in southern Europe requires not only ad hoc local actions but also decided national and European-wide strategies." @default.
- W2891745768 created "2018-09-27" @default.
- W2891745768 creator A5030186917 @default.
- W2891745768 creator A5036155190 @default.
- W2891745768 creator A5041243711 @default.
- W2891745768 creator A5056012765 @default.
- W2891745768 creator A5067547227 @default.
- W2891745768 creator A5070292384 @default.
- W2891745768 creator A5072436785 @default.
- W2891745768 date "2019-04-25" @default.
- W2891745768 modified "2023-09-28" @default.
- W2891745768 title "Ozone source apportionment during peak summer events over southwestern Europe" @default.
- W2891745768 cites W1163725043 @default.
- W2891745768 cites W1749636388 @default.
- W2891745768 cites W1825471340 @default.
- W2891745768 cites W1951292167 @default.
- W2891745768 cites W1967263660 @default.
- W2891745768 cites W1970012412 @default.
- W2891745768 cites W1979006455 @default.
- W2891745768 cites W1986062747 @default.
- W2891745768 cites W1989518161 @default.
- W2891745768 cites W2002570697 @default.
- W2891745768 cites W2004176804 @default.
- W2891745768 cites W2006378095 @default.
- W2891745768 cites W2006634233 @default.
- W2891745768 cites W2008641894 @default.
- W2891745768 cites W2009565767 @default.
- W2891745768 cites W2013423100 @default.
- W2891745768 cites W2014001974 @default.
- W2891745768 cites W2014567090 @default.
- W2891745768 cites W2016453579 @default.
- W2891745768 cites W2018558497 @default.
- W2891745768 cites W2021350270 @default.
- W2891745768 cites W2025926774 @default.
- W2891745768 cites W2032230983 @default.
- W2891745768 cites W2041024578 @default.
- W2891745768 cites W2043405144 @default.
- W2891745768 cites W2045704608 @default.
- W2891745768 cites W2047364731 @default.
- W2891745768 cites W2055703682 @default.
- W2891745768 cites W2057953420 @default.
- W2891745768 cites W2059904357 @default.
- W2891745768 cites W2061740251 @default.
- W2891745768 cites W2067710282 @default.
- W2891745768 cites W2069062559 @default.
- W2891745768 cites W2071145452 @default.
- W2891745768 cites W2072271228 @default.
- W2891745768 cites W2073751119 @default.
- W2891745768 cites W2079054909 @default.
- W2891745768 cites W2091227784 @default.
- W2891745768 cites W2092442850 @default.
- W2891745768 cites W2097427427 @default.
- W2891745768 cites W2098896561 @default.
- W2891745768 cites W2099633906 @default.
- W2891745768 cites W2103001772 @default.
- W2891745768 cites W2106936768 @default.
- W2891745768 cites W2113092017 @default.
- W2891745768 cites W2114191971 @default.
- W2891745768 cites W2115894036 @default.
- W2891745768 cites W2116124023 @default.
- W2891745768 cites W2117087906 @default.
- W2891745768 cites W2119219396 @default.
- W2891745768 cites W2120464484 @default.
- W2891745768 cites W2125189134 @default.
- W2891745768 cites W2128406568 @default.
- W2891745768 cites W2132051905 @default.
- W2891745768 cites W2146935358 @default.
- W2891745768 cites W2148999460 @default.
- W2891745768 cites W2150716309 @default.
- W2891745768 cites W2151181273 @default.
- W2891745768 cites W2158636480 @default.
- W2891745768 cites W2161515797 @default.
- W2891745768 cites W2163231587 @default.
- W2891745768 cites W2163942247 @default.
- W2891745768 cites W2170381809 @default.
- W2891745768 cites W2171368857 @default.
- W2891745768 cites W2175544125 @default.
- W2891745768 cites W2266554275 @default.
- W2891745768 cites W2292228812 @default.
- W2891745768 cites W2300488008 @default.
- W2891745768 cites W2407413588 @default.
- W2891745768 cites W2509939244 @default.
- W2891745768 cites W2556585018 @default.
- W2891745768 cites W2589569844 @default.
- W2891745768 cites W2599285853 @default.
- W2891745768 cites W2603194563 @default.
- W2891745768 cites W2607275868 @default.
- W2891745768 cites W2625844490 @default.
- W2891745768 cites W2768180739 @default.
- W2891745768 cites W2770093436 @default.
- W2891745768 cites W2785427651 @default.
- W2891745768 cites W2785649357 @default.
- W2891745768 cites W2790450981 @default.
- W2891745768 cites W2790749844 @default.
- W2891745768 cites W4246560434 @default.
- W2891745768 doi "https://doi.org/10.5194/acp-19-5467-2019" @default.
- W2891745768 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7788066" @default.
- W2891745768 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33424952" @default.