Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891749414> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2891749414 abstract "Summary A main challenge in seismic imaging is acquiring densely sampled data. Compressed Sensing has provided theoretical foundations upon which desired sampling rate can be achieved by applying a sparsity promoting algorithm on sub-sampled data. The key point in successful recovery is to deploy a randomized sampling scheme. In this paper, we propose a novel deep learning-based method for fast and accurate reconstruction of heavily under-sampled seismic data, regardless of type of sampling. A neural network learns to do reconstruction directly from data via an adversarial process. Once trained, the reconstruction can be done by just feeding the frequency slice with missing data into the neural network. This adaptive nonlinear model makes the algorithm extremely flexible, applicable to data with arbitrarily type of sampling. With the assumption that we have access to training data, the quality of reconstructed slice is superior even for extremely low sampling rate (as low as 10%) due to the data-driven nature of the method." @default.
- W2891749414 created "2018-09-27" @default.
- W2891749414 creator A5010780250 @default.
- W2891749414 creator A5044553315 @default.
- W2891749414 creator A5077465316 @default.
- W2891749414 date "2018-06-11" @default.
- W2891749414 modified "2023-10-01" @default.
- W2891749414 title "Seismic Data Reconstruction with Generative Adversarial Networks" @default.
- W2891749414 cites W2004182963 @default.
- W2891749414 cites W2055640705 @default.
- W2891749414 cites W2106295515 @default.
- W2891749414 cites W2170860899 @default.
- W2891749414 doi "https://doi.org/10.3997/2214-4609.201801393" @default.
- W2891749414 hasPublicationYear "2018" @default.
- W2891749414 type Work @default.
- W2891749414 sameAs 2891749414 @default.
- W2891749414 citedByCount "50" @default.
- W2891749414 countsByYear W28917494142018 @default.
- W2891749414 countsByYear W28917494142019 @default.
- W2891749414 countsByYear W28917494142020 @default.
- W2891749414 countsByYear W28917494142021 @default.
- W2891749414 countsByYear W28917494142022 @default.
- W2891749414 countsByYear W28917494142023 @default.
- W2891749414 crossrefType "proceedings-article" @default.
- W2891749414 hasAuthorship W2891749414A5010780250 @default.
- W2891749414 hasAuthorship W2891749414A5044553315 @default.
- W2891749414 hasAuthorship W2891749414A5077465316 @default.
- W2891749414 hasConcept C105795698 @default.
- W2891749414 hasConcept C106131492 @default.
- W2891749414 hasConcept C111919701 @default.
- W2891749414 hasConcept C11413529 @default.
- W2891749414 hasConcept C119857082 @default.
- W2891749414 hasConcept C124101348 @default.
- W2891749414 hasConcept C124851039 @default.
- W2891749414 hasConcept C140779682 @default.
- W2891749414 hasConcept C141379421 @default.
- W2891749414 hasConcept C153180895 @default.
- W2891749414 hasConcept C154945302 @default.
- W2891749414 hasConcept C19499675 @default.
- W2891749414 hasConcept C26517878 @default.
- W2891749414 hasConcept C2781395549 @default.
- W2891749414 hasConcept C31972630 @default.
- W2891749414 hasConcept C33923547 @default.
- W2891749414 hasConcept C37736160 @default.
- W2891749414 hasConcept C38652104 @default.
- W2891749414 hasConcept C41008148 @default.
- W2891749414 hasConcept C50644808 @default.
- W2891749414 hasConcept C98045186 @default.
- W2891749414 hasConceptScore W2891749414C105795698 @default.
- W2891749414 hasConceptScore W2891749414C106131492 @default.
- W2891749414 hasConceptScore W2891749414C111919701 @default.
- W2891749414 hasConceptScore W2891749414C11413529 @default.
- W2891749414 hasConceptScore W2891749414C119857082 @default.
- W2891749414 hasConceptScore W2891749414C124101348 @default.
- W2891749414 hasConceptScore W2891749414C124851039 @default.
- W2891749414 hasConceptScore W2891749414C140779682 @default.
- W2891749414 hasConceptScore W2891749414C141379421 @default.
- W2891749414 hasConceptScore W2891749414C153180895 @default.
- W2891749414 hasConceptScore W2891749414C154945302 @default.
- W2891749414 hasConceptScore W2891749414C19499675 @default.
- W2891749414 hasConceptScore W2891749414C26517878 @default.
- W2891749414 hasConceptScore W2891749414C2781395549 @default.
- W2891749414 hasConceptScore W2891749414C31972630 @default.
- W2891749414 hasConceptScore W2891749414C33923547 @default.
- W2891749414 hasConceptScore W2891749414C37736160 @default.
- W2891749414 hasConceptScore W2891749414C38652104 @default.
- W2891749414 hasConceptScore W2891749414C41008148 @default.
- W2891749414 hasConceptScore W2891749414C50644808 @default.
- W2891749414 hasConceptScore W2891749414C98045186 @default.
- W2891749414 hasLocation W28917494141 @default.
- W2891749414 hasOpenAccess W2891749414 @default.
- W2891749414 hasPrimaryLocation W28917494141 @default.
- W2891749414 hasRelatedWork W1658810540 @default.
- W2891749414 hasRelatedWork W1999371807 @default.
- W2891749414 hasRelatedWork W2036270302 @default.
- W2891749414 hasRelatedWork W2092706821 @default.
- W2891749414 hasRelatedWork W2165917246 @default.
- W2891749414 hasRelatedWork W2587863204 @default.
- W2891749414 hasRelatedWork W3046843850 @default.
- W2891749414 hasRelatedWork W4313527080 @default.
- W2891749414 hasRelatedWork W4386716251 @default.
- W2891749414 hasRelatedWork W2146356199 @default.
- W2891749414 isParatext "false" @default.
- W2891749414 isRetracted "false" @default.
- W2891749414 magId "2891749414" @default.
- W2891749414 workType "article" @default.