Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891750563> ?p ?o ?g. }
- W2891750563 endingPage "240" @default.
- W2891750563 startingPage "230" @default.
- W2891750563 abstract "Air quality deteriorates fast under urbanization in recent decades. Reliable and precise regional multi-step-ahead PM2.5 forecasts are crucial and beneficial for mitigating health risks. This work explores a novel framework (MM-SVM) that combines the Multi-output Support Vector Machine (M-SVM) and the Multi-Task Learning (MTL) algorithm for effectively increasing the accuracy of regional multi-step-ahead forecasts through tackling error accumulation and propagation that is commonly encountered in regional forecasting. The Single-output SVM (S-SVM) is implemented as a benchmark. Taipei City of Taiwan is our study area, where three types of air quality monitoring stations are selected to represent areas imposed with high traffic influences, high human activities and commercial trading influences, and less human interventions close to nature situation, respectively. We consider forecasts of PM2.5 concentrations as a function of meteorological and air quality factors based on long-term (2010–2016) observational datasets. Firstly, the Kendall tau coefficient is conducted to extract key spatiotemporal factors from regional meteorological and air quality inputs. Secondly, the M-SVM model is trained by the MTL to capture non-linear relationships and share correlation information across related tasks. Lastly, the MM-SVM model is validated using hourly time series of PM2.5 concentrations as well as meteorological and air quality datasets. Regarding the applicability of regional multi-step-ahead forecasts, the results demonstrate that the MM-SVM model is much more promising than the S-SVM model because only one forecast model (MM-SVM) is required, instead of constructing a site-specific S-SVM model for each station. Moreover, the forecasts of the MM-SVM are found better consistent with observations than those of any single S-SVM in both training and testing stages. Consequently, the results clearly demonstrate that the MM-SVM model could be recommended as a novel integrative technique for improving the spatiotemporal stability and accuracy of regional multi-step-ahead PM2.5 forecasts." @default.
- W2891750563 created "2018-09-27" @default.
- W2891750563 creator A5015138345 @default.
- W2891750563 creator A5041931666 @default.
- W2891750563 creator A5053926522 @default.
- W2891750563 creator A5064500201 @default.
- W2891750563 creator A5084718363 @default.
- W2891750563 creator A5089700077 @default.
- W2891750563 date "2019-02-01" @default.
- W2891750563 modified "2023-10-16" @default.
- W2891750563 title "Multi-output support vector machine for regional multi-step-ahead PM2.5 forecasting" @default.
- W2891750563 cites W1964176024 @default.
- W2891750563 cites W1968633746 @default.
- W2891750563 cites W1969296254 @default.
- W2891750563 cites W1985254019 @default.
- W2891750563 cites W1986421176 @default.
- W2891750563 cites W2028163949 @default.
- W2891750563 cites W2084341169 @default.
- W2891750563 cites W2122340689 @default.
- W2891750563 cites W2128716097 @default.
- W2891750563 cites W2130189616 @default.
- W2891750563 cites W2143419558 @default.
- W2891750563 cites W2224627999 @default.
- W2891750563 cites W2282992258 @default.
- W2891750563 cites W2286206973 @default.
- W2891750563 cites W2312694547 @default.
- W2891750563 cites W2323483937 @default.
- W2891750563 cites W2461336101 @default.
- W2891750563 cites W2487948615 @default.
- W2891750563 cites W2515225520 @default.
- W2891750563 cites W2529846738 @default.
- W2891750563 cites W2530443992 @default.
- W2891750563 cites W2543049936 @default.
- W2891750563 cites W2543678400 @default.
- W2891750563 cites W2581220703 @default.
- W2891750563 cites W2593430120 @default.
- W2891750563 cites W2600717148 @default.
- W2891750563 cites W2740399779 @default.
- W2891750563 cites W2754790542 @default.
- W2891750563 cites W2770791516 @default.
- W2891750563 cites W2774119575 @default.
- W2891750563 cites W2780666316 @default.
- W2891750563 cites W2790795042 @default.
- W2891750563 cites W2791693928 @default.
- W2891750563 cites W2793167459 @default.
- W2891750563 cites W2794210464 @default.
- W2891750563 cites W2795470013 @default.
- W2891750563 cites W2799286067 @default.
- W2891750563 cites W291361625 @default.
- W2891750563 doi "https://doi.org/10.1016/j.scitotenv.2018.09.111" @default.
- W2891750563 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30243160" @default.
- W2891750563 hasPublicationYear "2019" @default.
- W2891750563 type Work @default.
- W2891750563 sameAs 2891750563 @default.
- W2891750563 citedByCount "102" @default.
- W2891750563 countsByYear W28917505632019 @default.
- W2891750563 countsByYear W28917505632020 @default.
- W2891750563 countsByYear W28917505632021 @default.
- W2891750563 countsByYear W28917505632022 @default.
- W2891750563 countsByYear W28917505632023 @default.
- W2891750563 crossrefType "journal-article" @default.
- W2891750563 hasAuthorship W2891750563A5015138345 @default.
- W2891750563 hasAuthorship W2891750563A5041931666 @default.
- W2891750563 hasAuthorship W2891750563A5053926522 @default.
- W2891750563 hasAuthorship W2891750563A5064500201 @default.
- W2891750563 hasAuthorship W2891750563A5084718363 @default.
- W2891750563 hasAuthorship W2891750563A5089700077 @default.
- W2891750563 hasConcept C111472728 @default.
- W2891750563 hasConcept C119857082 @default.
- W2891750563 hasConcept C12267149 @default.
- W2891750563 hasConcept C124101348 @default.
- W2891750563 hasConcept C126314574 @default.
- W2891750563 hasConcept C13280743 @default.
- W2891750563 hasConcept C138885662 @default.
- W2891750563 hasConcept C153294291 @default.
- W2891750563 hasConcept C154945302 @default.
- W2891750563 hasConcept C185798385 @default.
- W2891750563 hasConcept C205649164 @default.
- W2891750563 hasConcept C2779530757 @default.
- W2891750563 hasConcept C41008148 @default.
- W2891750563 hasConceptScore W2891750563C111472728 @default.
- W2891750563 hasConceptScore W2891750563C119857082 @default.
- W2891750563 hasConceptScore W2891750563C12267149 @default.
- W2891750563 hasConceptScore W2891750563C124101348 @default.
- W2891750563 hasConceptScore W2891750563C126314574 @default.
- W2891750563 hasConceptScore W2891750563C13280743 @default.
- W2891750563 hasConceptScore W2891750563C138885662 @default.
- W2891750563 hasConceptScore W2891750563C153294291 @default.
- W2891750563 hasConceptScore W2891750563C154945302 @default.
- W2891750563 hasConceptScore W2891750563C185798385 @default.
- W2891750563 hasConceptScore W2891750563C205649164 @default.
- W2891750563 hasConceptScore W2891750563C2779530757 @default.
- W2891750563 hasConceptScore W2891750563C41008148 @default.
- W2891750563 hasFunder F4320321543 @default.
- W2891750563 hasFunder F4320322795 @default.
- W2891750563 hasLocation W28917505631 @default.
- W2891750563 hasLocation W28917505632 @default.
- W2891750563 hasOpenAccess W2891750563 @default.