Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891768540> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2891768540 endingPage "232" @default.
- W2891768540 startingPage "216" @default.
- W2891768540 abstract "Efficient distributed numerical word representation models (word embeddings) combined with modern machine learning algorithms have recently yielded considerable improvement on automatic document classification tasks. However, the effectiveness of such techniques has not been assessed for the hierarchical text classification (HTC) yet. This study investigates the application of those models and algorithms on this specific problem by means of experimentation and analysis. We trained classification models with prominent machine learning algorithm implementations—fastText, XGBoost, SVM, and Keras’ CNN—and noticeable word embeddings generation methods—GloVe, word2vec, and fastText—with publicly available data and evaluated them with measures specifically appropriate for the hierarchical context. FastText achieved an lcaF1 of 0.893 on a single-labeled version of the RCV1 dataset. An analysis indicates that using word embeddings and its flavors is a very promising approach for HTC." @default.
- W2891768540 created "2018-09-27" @default.
- W2891768540 creator A5001943586 @default.
- W2891768540 creator A5030595984 @default.
- W2891768540 creator A5068706845 @default.
- W2891768540 date "2019-01-01" @default.
- W2891768540 modified "2023-10-16" @default.
- W2891768540 title "An analysis of hierarchical text classification using word embeddings" @default.
- W2891768540 cites W1751470192 @default.
- W2891768540 cites W1981208470 @default.
- W2891768540 cites W1987220101 @default.
- W2891768540 cites W2008031590 @default.
- W2891768540 cites W2076063813 @default.
- W2891768540 cites W2118020653 @default.
- W2891768540 cites W2119466907 @default.
- W2891768540 cites W2150766729 @default.
- W2891768540 cites W2152953875 @default.
- W2891768540 cites W2529769913 @default.
- W2891768540 cites W2919115771 @default.
- W2891768540 cites W3122990092 @default.
- W2891768540 doi "https://doi.org/10.1016/j.ins.2018.09.001" @default.
- W2891768540 hasPublicationYear "2019" @default.
- W2891768540 type Work @default.
- W2891768540 sameAs 2891768540 @default.
- W2891768540 citedByCount "140" @default.
- W2891768540 countsByYear W28917685402019 @default.
- W2891768540 countsByYear W28917685402020 @default.
- W2891768540 countsByYear W28917685402021 @default.
- W2891768540 countsByYear W28917685402022 @default.
- W2891768540 countsByYear W28917685402023 @default.
- W2891768540 crossrefType "journal-article" @default.
- W2891768540 hasAuthorship W2891768540A5001943586 @default.
- W2891768540 hasAuthorship W2891768540A5030595984 @default.
- W2891768540 hasAuthorship W2891768540A5068706845 @default.
- W2891768540 hasBestOaLocation W28917685402 @default.
- W2891768540 hasConcept C119857082 @default.
- W2891768540 hasConcept C12267149 @default.
- W2891768540 hasConcept C151730666 @default.
- W2891768540 hasConcept C153180895 @default.
- W2891768540 hasConcept C154945302 @default.
- W2891768540 hasConcept C17744445 @default.
- W2891768540 hasConcept C199539241 @default.
- W2891768540 hasConcept C204321447 @default.
- W2891768540 hasConcept C2524010 @default.
- W2891768540 hasConcept C2776359362 @default.
- W2891768540 hasConcept C2776461190 @default.
- W2891768540 hasConcept C2779343474 @default.
- W2891768540 hasConcept C2780479914 @default.
- W2891768540 hasConcept C33923547 @default.
- W2891768540 hasConcept C41008148 @default.
- W2891768540 hasConcept C41608201 @default.
- W2891768540 hasConcept C86803240 @default.
- W2891768540 hasConcept C90805587 @default.
- W2891768540 hasConcept C94625758 @default.
- W2891768540 hasConceptScore W2891768540C119857082 @default.
- W2891768540 hasConceptScore W2891768540C12267149 @default.
- W2891768540 hasConceptScore W2891768540C151730666 @default.
- W2891768540 hasConceptScore W2891768540C153180895 @default.
- W2891768540 hasConceptScore W2891768540C154945302 @default.
- W2891768540 hasConceptScore W2891768540C17744445 @default.
- W2891768540 hasConceptScore W2891768540C199539241 @default.
- W2891768540 hasConceptScore W2891768540C204321447 @default.
- W2891768540 hasConceptScore W2891768540C2524010 @default.
- W2891768540 hasConceptScore W2891768540C2776359362 @default.
- W2891768540 hasConceptScore W2891768540C2776461190 @default.
- W2891768540 hasConceptScore W2891768540C2779343474 @default.
- W2891768540 hasConceptScore W2891768540C2780479914 @default.
- W2891768540 hasConceptScore W2891768540C33923547 @default.
- W2891768540 hasConceptScore W2891768540C41008148 @default.
- W2891768540 hasConceptScore W2891768540C41608201 @default.
- W2891768540 hasConceptScore W2891768540C86803240 @default.
- W2891768540 hasConceptScore W2891768540C90805587 @default.
- W2891768540 hasConceptScore W2891768540C94625758 @default.
- W2891768540 hasFunder F4320321091 @default.
- W2891768540 hasLocation W28917685401 @default.
- W2891768540 hasLocation W28917685402 @default.
- W2891768540 hasLocation W28917685403 @default.
- W2891768540 hasLocation W28917685404 @default.
- W2891768540 hasOpenAccess W2891768540 @default.
- W2891768540 hasPrimaryLocation W28917685401 @default.
- W2891768540 hasRelatedWork W2346530426 @default.
- W2891768540 hasRelatedWork W2751556781 @default.
- W2891768540 hasRelatedWork W2772765860 @default.
- W2891768540 hasRelatedWork W2890749918 @default.
- W2891768540 hasRelatedWork W2905749112 @default.
- W2891768540 hasRelatedWork W3046869600 @default.
- W2891768540 hasRelatedWork W3099354896 @default.
- W2891768540 hasRelatedWork W3101154008 @default.
- W2891768540 hasRelatedWork W4287599800 @default.
- W2891768540 hasRelatedWork W4312264180 @default.
- W2891768540 hasVolume "471" @default.
- W2891768540 isParatext "false" @default.
- W2891768540 isRetracted "false" @default.
- W2891768540 magId "2891768540" @default.
- W2891768540 workType "article" @default.