Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891769144> ?p ?o ?g. }
- W2891769144 abstract "Nowadays, good supply chain management is most important to guarantee a competitive advantage and to accomplish the value promise offered to the company’s clients. To this end, it is important to reduce uncertainty associated with demand, and it is important that demand forecast is as accurate as possible. To achieve this, it is necessary to know the features of the demand to be forecast and, based on this, to build or choose the best and the most accurate model or technique, which is based normally on that with fewer errors. Many statistical techniques exist, but for some 20 years, many heuristic algorithms have been developed that allow to absorb the variance associated with demand, and to reduce forecasting errors with better results than those obtained by statistical methods. These methods are normally adaptive and allow to hybridize techniques to construct different models. This document reviews these adaptive techniques, such as neural networks (NN) and hybrid methods, and in particular models based on case-based reasoning (CBR)." @default.
- W2891769144 created "2018-09-27" @default.
- W2891769144 creator A5009412588 @default.
- W2891769144 creator A5009888309 @default.
- W2891769144 creator A5088351704 @default.
- W2891769144 date "2018-09-19" @default.
- W2891769144 modified "2023-09-24" @default.
- W2891769144 title "Adaptive and Hybrid Forecasting Models—A Review" @default.
- W2891769144 cites W1569827227 @default.
- W2891769144 cites W1821974783 @default.
- W2891769144 cites W1964353181 @default.
- W2891769144 cites W1969574035 @default.
- W2891769144 cites W1969988238 @default.
- W2891769144 cites W1971619052 @default.
- W2891769144 cites W1972581513 @default.
- W2891769144 cites W1973237289 @default.
- W2891769144 cites W1974183452 @default.
- W2891769144 cites W1974406753 @default.
- W2891769144 cites W1983624708 @default.
- W2891769144 cites W1989130706 @default.
- W2891769144 cites W1990183525 @default.
- W2891769144 cites W1997570574 @default.
- W2891769144 cites W1997994299 @default.
- W2891769144 cites W1998203213 @default.
- W2891769144 cites W1998485133 @default.
- W2891769144 cites W1998726167 @default.
- W2891769144 cites W2004014847 @default.
- W2891769144 cites W2006243547 @default.
- W2891769144 cites W2006493581 @default.
- W2891769144 cites W2007240797 @default.
- W2891769144 cites W2012079387 @default.
- W2891769144 cites W2012946525 @default.
- W2891769144 cites W2013280094 @default.
- W2891769144 cites W2013472039 @default.
- W2891769144 cites W2013494753 @default.
- W2891769144 cites W2016166233 @default.
- W2891769144 cites W2016646227 @default.
- W2891769144 cites W2017723190 @default.
- W2891769144 cites W2024034280 @default.
- W2891769144 cites W2029150773 @default.
- W2891769144 cites W2033348701 @default.
- W2891769144 cites W2033787086 @default.
- W2891769144 cites W2038781693 @default.
- W2891769144 cites W2039853520 @default.
- W2891769144 cites W2041738467 @default.
- W2891769144 cites W2042160169 @default.
- W2891769144 cites W2043196319 @default.
- W2891769144 cites W2051272931 @default.
- W2891769144 cites W2052090470 @default.
- W2891769144 cites W2053254663 @default.
- W2891769144 cites W2056401416 @default.
- W2891769144 cites W2059823667 @default.
- W2891769144 cites W2062950506 @default.
- W2891769144 cites W2064652494 @default.
- W2891769144 cites W2067439036 @default.
- W2891769144 cites W2067857935 @default.
- W2891769144 cites W2074531922 @default.
- W2891769144 cites W2075938436 @default.
- W2891769144 cites W2076520076 @default.
- W2891769144 cites W2079406519 @default.
- W2891769144 cites W2079503797 @default.
- W2891769144 cites W2082633357 @default.
- W2891769144 cites W2083457386 @default.
- W2891769144 cites W2084357467 @default.
- W2891769144 cites W2093214690 @default.
- W2891769144 cites W2106337103 @default.
- W2891769144 cites W2118017464 @default.
- W2891769144 cites W2127842029 @default.
- W2891769144 cites W2138289546 @default.
- W2891769144 cites W2148861742 @default.
- W2891769144 cites W2149905014 @default.
- W2891769144 cites W2170681242 @default.
- W2891769144 cites W2214106063 @default.
- W2891769144 cites W2254535312 @default.
- W2891769144 cites W2268394201 @default.
- W2891769144 cites W2310065469 @default.
- W2891769144 cites W2394680095 @default.
- W2891769144 cites W2493441348 @default.
- W2891769144 cites W3124492796 @default.
- W2891769144 cites W385004530 @default.
- W2891769144 cites W4240937022 @default.
- W2891769144 doi "https://doi.org/10.1007/978-3-319-96005-0_38" @default.
- W2891769144 hasPublicationYear "2018" @default.
- W2891769144 type Work @default.
- W2891769144 sameAs 2891769144 @default.
- W2891769144 citedByCount "6" @default.
- W2891769144 countsByYear W28917691442019 @default.
- W2891769144 countsByYear W28917691442020 @default.
- W2891769144 countsByYear W28917691442022 @default.
- W2891769144 crossrefType "book-chapter" @default.
- W2891769144 hasAuthorship W2891769144A5009412588 @default.
- W2891769144 hasAuthorship W2891769144A5009888309 @default.
- W2891769144 hasAuthorship W2891769144A5088351704 @default.
- W2891769144 hasConcept C119857082 @default.
- W2891769144 hasConcept C121955636 @default.
- W2891769144 hasConcept C124101348 @default.
- W2891769144 hasConcept C127413603 @default.
- W2891769144 hasConcept C154945302 @default.
- W2891769144 hasConcept C162324750 @default.
- W2891769144 hasConcept C173801870 @default.