Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891776345> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2891776345 endingPage "1389" @default.
- W2891776345 startingPage "1378" @default.
- W2891776345 abstract "Using connected vehicle technology, a number of eco-approach and departure (EAD) strategies have been designed to guide vehicles through signalized intersections in an eco-friendly way. Most of the existing EAD applications have been developed and tested in traffic-free scenarios or in a fully connected environment, where the presence and behavior of all surrounding vehicles are detectable. In this paper, we describe a prediction-based EAD strategy that can be applied toward more realistic scenarios, where the surrounding vehicles can be either a connected or non-connected. Unlike highway scenarios, predicting speed trajectories along signalized corridors is much more challenging due to disturbances from signals, traffic queues, and pedestrians. Based on vehicle activity data available via inter-vehicle communication or onboard sensing (e.g., by radar), we evaluate three state-of-the-art nonlinear regression models to perform short-term speed forecasting of the preceding vehicle. It turns out radial basis function neural network outperformed both Gaussian process and multi-layer perceptron network in terms of prediction accuracy and computational efficiency. Using signal phase and timing information and the predicted state of the preceding vehicle, our prediction-based EAD algorithm achieved better fuel economy and emissions reduction in urban traffic and queues at intersections. Results from the numerical simulation using the next generation simulation data set show that the proposed prediction-based EAD system achieve 4.0% energy savings and 4.0% - 41.7% pollutant emission reduction compared with a conventional car following strategy. Prediction-based EAD saves 1.9% energy and reduces criteria pollutant emissions by 1.9% - 33.4% compared with an existing EAD algorithm without prediction in urban traffic." @default.
- W2891776345 created "2018-09-27" @default.
- W2891776345 creator A5006183071 @default.
- W2891776345 creator A5014488040 @default.
- W2891776345 creator A5024385167 @default.
- W2891776345 creator A5026317556 @default.
- W2891776345 creator A5049539929 @default.
- W2891776345 creator A5088116668 @default.
- W2891776345 date "2019-04-01" @default.
- W2891776345 modified "2023-10-05" @default.
- W2891776345 title "Prediction-Based Eco-Approach and Departure at Signalized Intersections With Speed Forecasting on Preceding Vehicles" @default.
- W2891776345 cites W1506055530 @default.
- W2891776345 cites W1601275632 @default.
- W2891776345 cites W1972299090 @default.
- W2891776345 cites W1978917517 @default.
- W2891776345 cites W1984985005 @default.
- W2891776345 cites W1988346842 @default.
- W2891776345 cites W1993074639 @default.
- W2891776345 cites W2012542580 @default.
- W2891776345 cites W2014284151 @default.
- W2891776345 cites W2034657044 @default.
- W2891776345 cites W2047111123 @default.
- W2891776345 cites W2049857321 @default.
- W2891776345 cites W2055556996 @default.
- W2891776345 cites W2084835622 @default.
- W2891776345 cites W2085882886 @default.
- W2891776345 cites W2089080831 @default.
- W2891776345 cites W2094686774 @default.
- W2891776345 cites W2099801425 @default.
- W2891776345 cites W2109764844 @default.
- W2891776345 cites W2157525649 @default.
- W2891776345 cites W2178213869 @default.
- W2891776345 cites W2280562613 @default.
- W2891776345 cites W2342227463 @default.
- W2891776345 cites W2527925474 @default.
- W2891776345 cites W2556405044 @default.
- W2891776345 cites W2739855756 @default.
- W2891776345 doi "https://doi.org/10.1109/tits.2018.2856809" @default.
- W2891776345 hasPublicationYear "2019" @default.
- W2891776345 type Work @default.
- W2891776345 sameAs 2891776345 @default.
- W2891776345 citedByCount "53" @default.
- W2891776345 countsByYear W28917763452019 @default.
- W2891776345 countsByYear W28917763452020 @default.
- W2891776345 countsByYear W28917763452021 @default.
- W2891776345 countsByYear W28917763452022 @default.
- W2891776345 countsByYear W28917763452023 @default.
- W2891776345 crossrefType "journal-article" @default.
- W2891776345 hasAuthorship W2891776345A5006183071 @default.
- W2891776345 hasAuthorship W2891776345A5014488040 @default.
- W2891776345 hasAuthorship W2891776345A5024385167 @default.
- W2891776345 hasAuthorship W2891776345A5026317556 @default.
- W2891776345 hasAuthorship W2891776345A5049539929 @default.
- W2891776345 hasAuthorship W2891776345A5088116668 @default.
- W2891776345 hasBestOaLocation W28917763452 @default.
- W2891776345 hasConcept C154945302 @default.
- W2891776345 hasConcept C160403385 @default.
- W2891776345 hasConcept C199360897 @default.
- W2891776345 hasConcept C41008148 @default.
- W2891776345 hasConcept C44154836 @default.
- W2891776345 hasConcept C50644808 @default.
- W2891776345 hasConcept C60908668 @default.
- W2891776345 hasConcept C79403827 @default.
- W2891776345 hasConceptScore W2891776345C154945302 @default.
- W2891776345 hasConceptScore W2891776345C160403385 @default.
- W2891776345 hasConceptScore W2891776345C199360897 @default.
- W2891776345 hasConceptScore W2891776345C41008148 @default.
- W2891776345 hasConceptScore W2891776345C44154836 @default.
- W2891776345 hasConceptScore W2891776345C50644808 @default.
- W2891776345 hasConceptScore W2891776345C60908668 @default.
- W2891776345 hasConceptScore W2891776345C79403827 @default.
- W2891776345 hasIssue "4" @default.
- W2891776345 hasLocation W28917763451 @default.
- W2891776345 hasLocation W28917763452 @default.
- W2891776345 hasOpenAccess W2891776345 @default.
- W2891776345 hasPrimaryLocation W28917763451 @default.
- W2891776345 hasRelatedWork W1501774291 @default.
- W2891776345 hasRelatedWork W1987886632 @default.
- W2891776345 hasRelatedWork W2024235597 @default.
- W2891776345 hasRelatedWork W2298381223 @default.
- W2891776345 hasRelatedWork W2386387936 @default.
- W2891776345 hasRelatedWork W2387034966 @default.
- W2891776345 hasRelatedWork W2415374961 @default.
- W2891776345 hasRelatedWork W4285268527 @default.
- W2891776345 hasRelatedWork W2276110787 @default.
- W2891776345 hasRelatedWork W874111343 @default.
- W2891776345 hasVolume "20" @default.
- W2891776345 isParatext "false" @default.
- W2891776345 isRetracted "false" @default.
- W2891776345 magId "2891776345" @default.
- W2891776345 workType "article" @default.