Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891777152> ?p ?o ?g. }
- W2891777152 endingPage "365" @default.
- W2891777152 startingPage "353" @default.
- W2891777152 abstract "Calcium/calmodulin-dependent (Ca2+/CaM-dependent) regulation of protein signaling has long been recognized for its importance in a number of physiological contexts. Found in almost all eukaryotic cells, Ca2+/CaM-dependent signaling participates in muscle development, immune responses, cardiac myocyte function and regulation of neuronal connectivity. In excitatory neurons, dynamic changes in the strength of synaptic connections, known as synaptic plasticity, occur when calcium ions (Ca2+) flux through NMDA receptors and bind the Ca2+-sensor calmodulin (CaM). Ca2+/CaM, in turn, regulates downstream protein signaling in actin polymerization, receptor trafficking, and transcription factor activation. The activation of downstream Ca2+/CaM-dependent binding proteins (CBPs) is a function of the frequency of Ca2+ flux, such that each CBP is preferentially “tuned” to different Ca2+ input signals. We have recently reported that competition among CBPs for CaM binding is alone sufficient to recreate in silico the observed in vivo frequency-dependence of several CBPs. However, CBP activation may strongly depend on the identity and concentration of proteins that constitute the competitive pool; with important implications in the regulation of CBPs in both normal and disease states. Here, we extend our previous deterministic model of competition among CBPs to include phosphodiesterases, AMPAR receptors that are important in synaptic plasticity, and enzymatic function of CBPs: cAMP regulation, kinase activity, and phosphatase activity. After rigorous parameterization and validation by global sensitivity analysis using Latin Hypercube Sampling (LHS) and Partial Rank Correlation Coefficients (PRCC), we explore how perturbing the competitive pool of CBPs influences downstream signaling events. In particular, we hypothesize that although perturbations may decrease activation of one CBP, increased activation of a separate, but enzymatically-related CBP could compensate for this loss, providing a homeostatic effect. First we compare dynamic model output of two models: a two-state model of Ca2+/CaM binding and a four-state model of Ca2+/CaM binding. We find that a four-state model of Ca2+/CaM binding best captures the dynamic nature of the rapid response of CaM and CBPs to Ca2+ flux in the system. Using global sensitivity analysis, we find that model output is robust to parameter variability. Indeed, although variations in the expression of the CaM buffer neurogranin (Ng) may cause a decrease in Ca2+/CaM-dependent kinase II (CaMKII) activation, overall AMPA receptor phosphorylation is preserved; ostensibly by a concomitant increase in adenylyl cyclase 8 (AC8)-mediated activation of protein kinase A (PKA). Indeed phosphorylation of AMPAR receptors by CaMKII and PKA is robust across a wide range of Ng concentrations, though increases in AMPAR phosphorylation is seen at low Ng levels approaching zero. Our results may explain recent counter-intuitive results in neurogranin knockout mice and provide further evidence that competitive tuning is an important mechanism in synaptic plasticity. These results may be readily translated to other Ca2+/CaM-dependent signaling systems in other cell types and can be used to suggest targeted experimental investigation to explain counter-intuitive or unexpected downstream signaling outcomes." @default.
- W2891777152 created "2018-09-27" @default.
- W2891777152 creator A5055742599 @default.
- W2891777152 creator A5088786894 @default.
- W2891777152 creator A5091087940 @default.
- W2891777152 date "2018-09-06" @default.
- W2891777152 modified "2023-09-25" @default.
- W2891777152 title "Competitive Tuning Among Ca2+/Calmodulin-Dependent Proteins: Analysis of In Silico Model Robustness and Parameter Variability" @default.
- W2891777152 cites W1504397462 @default.
- W2891777152 cites W1506911550 @default.
- W2891777152 cites W1545633418 @default.
- W2891777152 cites W1557933310 @default.
- W2891777152 cites W1575693343 @default.
- W2891777152 cites W1960769979 @default.
- W2891777152 cites W1973794735 @default.
- W2891777152 cites W1974109612 @default.
- W2891777152 cites W1975246673 @default.
- W2891777152 cites W1981195606 @default.
- W2891777152 cites W1983183524 @default.
- W2891777152 cites W1993921720 @default.
- W2891777152 cites W1997297151 @default.
- W2891777152 cites W1999090451 @default.
- W2891777152 cites W2017789880 @default.
- W2891777152 cites W2017946331 @default.
- W2891777152 cites W2020564163 @default.
- W2891777152 cites W2023013885 @default.
- W2891777152 cites W2024207015 @default.
- W2891777152 cites W2028519419 @default.
- W2891777152 cites W2033942553 @default.
- W2891777152 cites W2034424952 @default.
- W2891777152 cites W2043454523 @default.
- W2891777152 cites W2043563082 @default.
- W2891777152 cites W2045593899 @default.
- W2891777152 cites W2048507037 @default.
- W2891777152 cites W2051493425 @default.
- W2891777152 cites W2052366943 @default.
- W2891777152 cites W2055787480 @default.
- W2891777152 cites W2059379142 @default.
- W2891777152 cites W2071700722 @default.
- W2891777152 cites W2071944061 @default.
- W2891777152 cites W2076664539 @default.
- W2891777152 cites W2080640632 @default.
- W2891777152 cites W2080893883 @default.
- W2891777152 cites W2083977375 @default.
- W2891777152 cites W2084010240 @default.
- W2891777152 cites W2086141071 @default.
- W2891777152 cites W2090461679 @default.
- W2891777152 cites W2096551329 @default.
- W2891777152 cites W2109975391 @default.
- W2891777152 cites W2124476290 @default.
- W2891777152 cites W2131619332 @default.
- W2891777152 cites W2139815948 @default.
- W2891777152 cites W2154653890 @default.
- W2891777152 cites W2157702984 @default.
- W2891777152 cites W2163883777 @default.
- W2891777152 cites W2167036087 @default.
- W2891777152 cites W2176235616 @default.
- W2891777152 cites W2286139548 @default.
- W2891777152 cites W2321479000 @default.
- W2891777152 cites W2504559731 @default.
- W2891777152 cites W2767465345 @default.
- W2891777152 cites W4238933913 @default.
- W2891777152 doi "https://doi.org/10.1007/s12195-018-0549-4" @default.
- W2891777152 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6519966" @default.
- W2891777152 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31105797" @default.
- W2891777152 hasPublicationYear "2018" @default.
- W2891777152 type Work @default.
- W2891777152 sameAs 2891777152 @default.
- W2891777152 citedByCount "3" @default.
- W2891777152 countsByYear W28917771522019 @default.
- W2891777152 countsByYear W28917771522020 @default.
- W2891777152 countsByYear W28917771522022 @default.
- W2891777152 crossrefType "journal-article" @default.
- W2891777152 hasAuthorship W2891777152A5055742599 @default.
- W2891777152 hasAuthorship W2891777152A5088786894 @default.
- W2891777152 hasAuthorship W2891777152A5091087940 @default.
- W2891777152 hasBestOaLocation W28917771522 @default.
- W2891777152 hasConcept C104317684 @default.
- W2891777152 hasConcept C11960822 @default.
- W2891777152 hasConcept C169760540 @default.
- W2891777152 hasConcept C170493617 @default.
- W2891777152 hasConcept C178666793 @default.
- W2891777152 hasConcept C181199279 @default.
- W2891777152 hasConcept C185592680 @default.
- W2891777152 hasConcept C201571599 @default.
- W2891777152 hasConcept C2775905019 @default.
- W2891777152 hasConcept C29688787 @default.
- W2891777152 hasConcept C55493867 @default.
- W2891777152 hasConcept C62478195 @default.
- W2891777152 hasConcept C63479239 @default.
- W2891777152 hasConcept C86803240 @default.
- W2891777152 hasConcept C95444343 @default.
- W2891777152 hasConcept C98229152 @default.
- W2891777152 hasConceptScore W2891777152C104317684 @default.
- W2891777152 hasConceptScore W2891777152C11960822 @default.
- W2891777152 hasConceptScore W2891777152C169760540 @default.
- W2891777152 hasConceptScore W2891777152C170493617 @default.
- W2891777152 hasConceptScore W2891777152C178666793 @default.