Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891779145> ?p ?o ?g. }
- W2891779145 endingPage "9227" @default.
- W2891779145 startingPage "9206" @default.
- W2891779145 abstract "Tree crown attributes are important parameters during the assessment and monitoring of forest ecosystems. Canopy height models (CHMs) derived from airborne laser scanning (ALS) data have proved to be a reliable source for extracting different biophysical characteristics of single trees and at stand level. However, ALS-derived tree measurements (e.g., mean crown diameter) can be negatively affected by pits that appear in the CHMs. Thus, we propose a novel method for generating pit-free CHMs from ALS point clouds for estimating crown attributes (i.e., area and mean diameter) at the species level. The method automatically calculates a threshold for a pixel based on the range of height values within neighbouring pixels; if the pixel falls below the threshold then it is recognized as a pitted pixel. The pit is then filled with the median of the values of the neighbouring pixels. Manually delineated individual tree crowns (ITC) of four deciduous and two coniferous species on Colour Infrared (CIR) stereo images were used as a reference in the analysis. In addition, a variety of different algorithms for constructing CHMs were compared to investigate the performance of different CHMs in similar forest conditions. Comparisons between the estimated and observed crown area (R2 = 0.95, RMSE% = 19.12% for all individuals) and mean diameter (R2 = 0.92, RMSE% = 12.16% for all individuals) revealed that ITC attributes were correctly estimated by segmentation of the pit-free CHM proposed in this study. The goodness of matching and geometry revealed that the delineated crowns correctly matched up to the reference data and had identical geometry in approximately 70% of cases. The results showed that the proposed method produced a CHM that estimates crown attributes more accurately than the other investigated CHMs. Furthermore, the findings suggest that the proposed algorithm used to fill pits with the median of height observed in surrounding pixels significantly improve the accuracy of the results the species level due to a higher correlation between the estimated and observed crown attributes. Based on these results, we concluded that the proposed pit filling method is capable of providing an automatic and objective solution for constructing pit-free CHMs for assessing individual crown attributes of mixed forest stands." @default.
- W2891779145 created "2018-09-27" @default.
- W2891779145 creator A5026728788 @default.
- W2891779145 creator A5051136316 @default.
- W2891779145 creator A5071291960 @default.
- W2891779145 creator A5074998431 @default.
- W2891779145 date "2018-09-12" @default.
- W2891779145 modified "2023-09-27" @default.
- W2891779145 title "Development of a robust canopy height model derived from ALS point clouds for predicting individual crown attributes at the species level" @default.
- W2891779145 cites W1491630371 @default.
- W2891779145 cites W1522370673 @default.
- W2891779145 cites W1928471770 @default.
- W2891779145 cites W1965597456 @default.
- W2891779145 cites W1970535395 @default.
- W2891779145 cites W1972508359 @default.
- W2891779145 cites W1983935692 @default.
- W2891779145 cites W1994585903 @default.
- W2891779145 cites W1998591632 @default.
- W2891779145 cites W2000975140 @default.
- W2891779145 cites W2005885990 @default.
- W2891779145 cites W2006264326 @default.
- W2891779145 cites W2009214675 @default.
- W2891779145 cites W2025234276 @default.
- W2891779145 cites W2028427954 @default.
- W2891779145 cites W2030359906 @default.
- W2891779145 cites W2032581192 @default.
- W2891779145 cites W2039476530 @default.
- W2891779145 cites W2065283443 @default.
- W2891779145 cites W2076712994 @default.
- W2891779145 cites W2080401607 @default.
- W2891779145 cites W2081127218 @default.
- W2891779145 cites W2119017937 @default.
- W2891779145 cites W2123306724 @default.
- W2891779145 cites W2125867579 @default.
- W2891779145 cites W2131058553 @default.
- W2891779145 cites W2132097058 @default.
- W2891779145 cites W2133160971 @default.
- W2891779145 cites W2138126656 @default.
- W2891779145 cites W2141182757 @default.
- W2891779145 cites W2146974384 @default.
- W2891779145 cites W2155260804 @default.
- W2891779145 cites W2156506702 @default.
- W2891779145 cites W2161746820 @default.
- W2891779145 cites W2165148193 @default.
- W2891779145 cites W2174904160 @default.
- W2891779145 cites W2217052705 @default.
- W2891779145 cites W2308288933 @default.
- W2891779145 cites W2313448762 @default.
- W2891779145 cites W2329027118 @default.
- W2891779145 cites W2440986827 @default.
- W2891779145 cites W2495260571 @default.
- W2891779145 cites W2505399031 @default.
- W2891779145 cites W2536582344 @default.
- W2891779145 cites W2555796043 @default.
- W2891779145 cites W2570161650 @default.
- W2891779145 cites W2591864944 @default.
- W2891779145 cites W2595526652 @default.
- W2891779145 cites W2608821828 @default.
- W2891779145 cites W2619078875 @default.
- W2891779145 cites W2742900898 @default.
- W2891779145 cites W2949975533 @default.
- W2891779145 doi "https://doi.org/10.1080/01431161.2018.1508916" @default.
- W2891779145 hasPublicationYear "2018" @default.
- W2891779145 type Work @default.
- W2891779145 sameAs 2891779145 @default.
- W2891779145 citedByCount "18" @default.
- W2891779145 countsByYear W28917791452019 @default.
- W2891779145 countsByYear W28917791452020 @default.
- W2891779145 countsByYear W28917791452021 @default.
- W2891779145 countsByYear W28917791452022 @default.
- W2891779145 countsByYear W28917791452023 @default.
- W2891779145 crossrefType "journal-article" @default.
- W2891779145 hasAuthorship W2891779145A5026728788 @default.
- W2891779145 hasAuthorship W2891779145A5051136316 @default.
- W2891779145 hasAuthorship W2891779145A5071291960 @default.
- W2891779145 hasAuthorship W2891779145A5074998431 @default.
- W2891779145 hasConcept C101000010 @default.
- W2891779145 hasConcept C105795698 @default.
- W2891779145 hasConcept C113174947 @default.
- W2891779145 hasConcept C120665830 @default.
- W2891779145 hasConcept C121332964 @default.
- W2891779145 hasConcept C131979681 @default.
- W2891779145 hasConcept C134306372 @default.
- W2891779145 hasConcept C139945424 @default.
- W2891779145 hasConcept C141349535 @default.
- W2891779145 hasConcept C154945302 @default.
- W2891779145 hasConcept C159985019 @default.
- W2891779145 hasConcept C160633673 @default.
- W2891779145 hasConcept C166957645 @default.
- W2891779145 hasConcept C18903297 @default.
- W2891779145 hasConcept C192562407 @default.
- W2891779145 hasConcept C199343813 @default.
- W2891779145 hasConcept C204323151 @default.
- W2891779145 hasConcept C205649164 @default.
- W2891779145 hasConcept C2778400979 @default.
- W2891779145 hasConcept C33283694 @default.
- W2891779145 hasConcept C33923547 @default.
- W2891779145 hasConcept C39432304 @default.