Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891781872> ?p ?o ?g. }
- W2891781872 abstract "Following the success of deep convolutional networks in various vision and speech related tasks, researchers have started investigating generalizations of the well-known technique for graph-structured data. A recently-proposed method called Graph Convolutional Networks has been able to achieve state-of-the-art results in the task of node classification. However, since the proposed method relies on localized first-order approximations of spectral graph convolutions, it is unable to capture higher-order interactions between nodes in the graph. In this work, we propose a motif-based graph attention model, called Motif Convolutional Networks (MCNs), which generalizes past approaches by using weighted multi-hop motif adjacency matrices to capture higher-order neighborhoods. A novel attention mechanism is used to allow each individual node to select the most relevant neighborhood to apply its filter. Experiments show that our proposed method is able to achieve state-of-the-art results on the semi-supervised node classification task." @default.
- W2891781872 created "2018-09-27" @default.
- W2891781872 creator A5002930471 @default.
- W2891781872 creator A5009957887 @default.
- W2891781872 creator A5029427277 @default.
- W2891781872 creator A5034026499 @default.
- W2891781872 creator A5058478290 @default.
- W2891781872 creator A5071007779 @default.
- W2891781872 date "2018-09-12" @default.
- W2891781872 modified "2023-09-27" @default.
- W2891781872 title "Higher-order Graph Convolutional Networks." @default.
- W2891781872 cites W1501856433 @default.
- W2891781872 cites W1514535095 @default.
- W2891781872 cites W1987815409 @default.
- W2891781872 cites W2104290444 @default.
- W2891781872 cites W2116341502 @default.
- W2891781872 cites W2118843429 @default.
- W2891781872 cites W2127827747 @default.
- W2891781872 cites W2153624566 @default.
- W2891781872 cites W2163605009 @default.
- W2891781872 cites W2194775991 @default.
- W2891781872 cites W2214802144 @default.
- W2891781872 cites W2319453305 @default.
- W2891781872 cites W2342662179 @default.
- W2891781872 cites W2407712691 @default.
- W2891781872 cites W2557074642 @default.
- W2891781872 cites W2558460151 @default.
- W2891781872 cites W2785951678 @default.
- W2891781872 cites W2788798739 @default.
- W2891781872 cites W2798643801 @default.
- W2891781872 cites W2798932700 @default.
- W2891781872 cites W2804080114 @default.
- W2891781872 cites W2898322439 @default.
- W2891781872 cites W2950898568 @default.
- W2891781872 cites W2951527505 @default.
- W2891781872 cites W2962938178 @default.
- W2891781872 cites W2963076818 @default.
- W2891781872 cites W2963673569 @default.
- W2891781872 cites W2963858333 @default.
- W2891781872 cites W2964308564 @default.
- W2891781872 cites W2964321699 @default.
- W2891781872 cites W2965469401 @default.
- W2891781872 cites W3104097132 @default.
- W2891781872 cites W637153065 @default.
- W2891781872 hasPublicationYear "2018" @default.
- W2891781872 type Work @default.
- W2891781872 sameAs 2891781872 @default.
- W2891781872 citedByCount "12" @default.
- W2891781872 countsByYear W28917818722019 @default.
- W2891781872 countsByYear W28917818722020 @default.
- W2891781872 countsByYear W28917818722021 @default.
- W2891781872 crossrefType "posted-content" @default.
- W2891781872 hasAuthorship W2891781872A5002930471 @default.
- W2891781872 hasAuthorship W2891781872A5009957887 @default.
- W2891781872 hasAuthorship W2891781872A5029427277 @default.
- W2891781872 hasAuthorship W2891781872A5034026499 @default.
- W2891781872 hasAuthorship W2891781872A5058478290 @default.
- W2891781872 hasAuthorship W2891781872A5071007779 @default.
- W2891781872 hasConcept C110484373 @default.
- W2891781872 hasConcept C11413529 @default.
- W2891781872 hasConcept C132525143 @default.
- W2891781872 hasConcept C154945302 @default.
- W2891781872 hasConcept C180356752 @default.
- W2891781872 hasConcept C41008148 @default.
- W2891781872 hasConcept C80444323 @default.
- W2891781872 hasConcept C81363708 @default.
- W2891781872 hasConceptScore W2891781872C110484373 @default.
- W2891781872 hasConceptScore W2891781872C11413529 @default.
- W2891781872 hasConceptScore W2891781872C132525143 @default.
- W2891781872 hasConceptScore W2891781872C154945302 @default.
- W2891781872 hasConceptScore W2891781872C180356752 @default.
- W2891781872 hasConceptScore W2891781872C41008148 @default.
- W2891781872 hasConceptScore W2891781872C80444323 @default.
- W2891781872 hasConceptScore W2891781872C81363708 @default.
- W2891781872 hasLocation W28917818721 @default.
- W2891781872 hasOpenAccess W2891781872 @default.
- W2891781872 hasPrimaryLocation W28917818721 @default.
- W2891781872 hasRelatedWork W2624431344 @default.
- W2891781872 hasRelatedWork W2899379687 @default.
- W2891781872 hasRelatedWork W2913240554 @default.
- W2891781872 hasRelatedWork W2935184916 @default.
- W2891781872 hasRelatedWork W2963066159 @default.
- W2891781872 hasRelatedWork W2983288276 @default.
- W2891781872 hasRelatedWork W2983864285 @default.
- W2891781872 hasRelatedWork W2995471443 @default.
- W2891781872 hasRelatedWork W3013336437 @default.
- W2891781872 hasRelatedWork W3020597450 @default.
- W2891781872 hasRelatedWork W3033565791 @default.
- W2891781872 hasRelatedWork W3038806345 @default.
- W2891781872 hasRelatedWork W3046888834 @default.
- W2891781872 hasRelatedWork W3049144784 @default.
- W2891781872 hasRelatedWork W3089628165 @default.
- W2891781872 hasRelatedWork W3104097132 @default.
- W2891781872 hasRelatedWork W3105136071 @default.
- W2891781872 hasRelatedWork W3133238023 @default.
- W2891781872 hasRelatedWork W3183488132 @default.
- W2891781872 hasRelatedWork W3205006230 @default.
- W2891781872 isParatext "false" @default.
- W2891781872 isRetracted "false" @default.
- W2891781872 magId "2891781872" @default.