Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891784361> ?p ?o ?g. }
- W2891784361 abstract "Detection of highly divergent or yet unknown viruses from metagenomics sequencing datasets is a major bioinformatics challenge. When human samples are sequenced, a large proportion of assembled contigs are classified as unknown, as conventional methods find no similarity to known sequences. We wished to explore whether machine learning algorithms using Relative Synonymous Codon Usage frequency (RSCU) could improve the detection of viral sequences in metagenomic sequencing data.We trained Random Forest and Artificial Neural Network using metagenomic sequences taxonomically classified into virus and non-virus classes. The algorithms achieved accuracies well beyond chance level, with area under ROC curve 0.79. Two codons (TCG and CGC) were found to have a particularly strong discriminative capacity.RSCU-based machine learning techniques applied to metagenomic sequencing data can help identify a large number of putative viral sequences and provide an addition to conventional methods for taxonomic classification." @default.
- W2891784361 created "2018-09-27" @default.
- W2891784361 creator A5005816566 @default.
- W2891784361 creator A5012509710 @default.
- W2891784361 creator A5030315040 @default.
- W2891784361 creator A5044539520 @default.
- W2891784361 creator A5056574222 @default.
- W2891784361 date "2018-09-24" @default.
- W2891784361 modified "2023-10-18" @default.
- W2891784361 title "Machine Learning for detection of viral sequences in human metagenomic datasets" @default.
- W2891784361 cites W1516998804 @default.
- W2891784361 cites W1727146986 @default.
- W2891784361 cites W1829716590 @default.
- W2891784361 cites W1964431626 @default.
- W2891784361 cites W1969707722 @default.
- W2891784361 cites W1987075894 @default.
- W2891784361 cites W1996031526 @default.
- W2891784361 cites W2008828320 @default.
- W2891784361 cites W2013378764 @default.
- W2891784361 cites W2020301105 @default.
- W2891784361 cites W2021072046 @default.
- W2891784361 cites W2021541608 @default.
- W2891784361 cites W2021906118 @default.
- W2891784361 cites W2051043527 @default.
- W2891784361 cites W2052437948 @default.
- W2891784361 cites W2054520741 @default.
- W2891784361 cites W2070010170 @default.
- W2891784361 cites W2085487956 @default.
- W2891784361 cites W2086872530 @default.
- W2891784361 cites W2103441770 @default.
- W2891784361 cites W2120267228 @default.
- W2891784361 cites W2126419817 @default.
- W2891784361 cites W2127338491 @default.
- W2891784361 cites W2129933858 @default.
- W2891784361 cites W2130734615 @default.
- W2891784361 cites W2141920662 @default.
- W2891784361 cites W2143481518 @default.
- W2891784361 cites W2145716882 @default.
- W2891784361 cites W2145933466 @default.
- W2891784361 cites W2146918217 @default.
- W2891784361 cites W2170747616 @default.
- W2891784361 cites W2343304395 @default.
- W2891784361 cites W2752631734 @default.
- W2891784361 cites W2789467204 @default.
- W2891784361 cites W2883604836 @default.
- W2891784361 cites W2911964244 @default.
- W2891784361 cites W4247053599 @default.
- W2891784361 doi "https://doi.org/10.1186/s12859-018-2340-x" @default.
- W2891784361 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6154907" @default.
- W2891784361 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30249176" @default.
- W2891784361 hasPublicationYear "2018" @default.
- W2891784361 type Work @default.
- W2891784361 sameAs 2891784361 @default.
- W2891784361 citedByCount "34" @default.
- W2891784361 countsByYear W28917843612019 @default.
- W2891784361 countsByYear W28917843612020 @default.
- W2891784361 countsByYear W28917843612021 @default.
- W2891784361 countsByYear W28917843612022 @default.
- W2891784361 countsByYear W28917843612023 @default.
- W2891784361 crossrefType "journal-article" @default.
- W2891784361 hasAuthorship W2891784361A5005816566 @default.
- W2891784361 hasAuthorship W2891784361A5012509710 @default.
- W2891784361 hasAuthorship W2891784361A5030315040 @default.
- W2891784361 hasAuthorship W2891784361A5044539520 @default.
- W2891784361 hasAuthorship W2891784361A5056574222 @default.
- W2891784361 hasBestOaLocation W28917843611 @default.
- W2891784361 hasConcept C104317684 @default.
- W2891784361 hasConcept C119857082 @default.
- W2891784361 hasConcept C132917006 @default.
- W2891784361 hasConcept C141231307 @default.
- W2891784361 hasConcept C150194340 @default.
- W2891784361 hasConcept C15151743 @default.
- W2891784361 hasConcept C154945302 @default.
- W2891784361 hasConcept C169258074 @default.
- W2891784361 hasConcept C190743605 @default.
- W2891784361 hasConcept C41008148 @default.
- W2891784361 hasConcept C51679486 @default.
- W2891784361 hasConcept C54355233 @default.
- W2891784361 hasConcept C59582021 @default.
- W2891784361 hasConcept C70721500 @default.
- W2891784361 hasConcept C86803240 @default.
- W2891784361 hasConcept C95371953 @default.
- W2891784361 hasConcept C97931131 @default.
- W2891784361 hasConceptScore W2891784361C104317684 @default.
- W2891784361 hasConceptScore W2891784361C119857082 @default.
- W2891784361 hasConceptScore W2891784361C132917006 @default.
- W2891784361 hasConceptScore W2891784361C141231307 @default.
- W2891784361 hasConceptScore W2891784361C150194340 @default.
- W2891784361 hasConceptScore W2891784361C15151743 @default.
- W2891784361 hasConceptScore W2891784361C154945302 @default.
- W2891784361 hasConceptScore W2891784361C169258074 @default.
- W2891784361 hasConceptScore W2891784361C190743605 @default.
- W2891784361 hasConceptScore W2891784361C41008148 @default.
- W2891784361 hasConceptScore W2891784361C51679486 @default.
- W2891784361 hasConceptScore W2891784361C54355233 @default.
- W2891784361 hasConceptScore W2891784361C59582021 @default.
- W2891784361 hasConceptScore W2891784361C70721500 @default.
- W2891784361 hasConceptScore W2891784361C86803240 @default.
- W2891784361 hasConceptScore W2891784361C95371953 @default.
- W2891784361 hasConceptScore W2891784361C97931131 @default.