Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891784861> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2891784861 endingPage "876" @default.
- W2891784861 startingPage "865" @default.
- W2891784861 abstract "With respect to the prediction of short-term unoccupied parking space of parking guidance and information system (PGIS),a prediction method using genetic algorithm combined with recurrent neural network (RNN) is proposed. First, set the parameters of the RNN population, including the search space of the neural network’s hidden layers, neuron number, and neuron type. Then by setting the parameters of the genetic algorithm to drive and control the RNN training process, and using the RMSE value of the prediction result as the fitness function of the genetic algorithm to perform the individual evaluation index of the RNN. Finally, the RMSE values of the predicted results of all RNN individuals on the experimental dataset are compared through two different scenarios of prediction examples to obtain the best prediction model. The results of experiments show that this method has excellent prediction accuracy and wide applicability for the prediction of short-term and parking spaces in parking guidance information systems." @default.
- W2891784861 created "2018-09-27" @default.
- W2891784861 creator A5011548719 @default.
- W2891784861 creator A5013967365 @default.
- W2891784861 creator A5026661029 @default.
- W2891784861 creator A5057666777 @default.
- W2891784861 date "2018-01-01" @default.
- W2891784861 modified "2023-10-10" @default.
- W2891784861 title "Prediction Method of Parking Space Based on Genetic Algorithm and RNN" @default.
- W2891784861 cites W1498436455 @default.
- W2891784861 cites W1972171461 @default.
- W2891784861 cites W2028489066 @default.
- W2891784861 cites W2030295525 @default.
- W2891784861 cites W2110378316 @default.
- W2891784861 cites W2117014758 @default.
- W2891784861 cites W2126385638 @default.
- W2891784861 cites W2586932894 @default.
- W2891784861 doi "https://doi.org/10.1007/978-3-030-00776-8_79" @default.
- W2891784861 hasPublicationYear "2018" @default.
- W2891784861 type Work @default.
- W2891784861 sameAs 2891784861 @default.
- W2891784861 citedByCount "7" @default.
- W2891784861 countsByYear W28917848612019 @default.
- W2891784861 countsByYear W28917848612020 @default.
- W2891784861 countsByYear W28917848612021 @default.
- W2891784861 countsByYear W28917848612022 @default.
- W2891784861 crossrefType "book-chapter" @default.
- W2891784861 hasAuthorship W2891784861A5011548719 @default.
- W2891784861 hasAuthorship W2891784861A5013967365 @default.
- W2891784861 hasAuthorship W2891784861A5026661029 @default.
- W2891784861 hasAuthorship W2891784861A5057666777 @default.
- W2891784861 hasConcept C105795698 @default.
- W2891784861 hasConcept C11413529 @default.
- W2891784861 hasConcept C119857082 @default.
- W2891784861 hasConcept C121332964 @default.
- W2891784861 hasConcept C139945424 @default.
- W2891784861 hasConcept C144024400 @default.
- W2891784861 hasConcept C147168706 @default.
- W2891784861 hasConcept C149923435 @default.
- W2891784861 hasConcept C154945302 @default.
- W2891784861 hasConcept C176066374 @default.
- W2891784861 hasConcept C2908647359 @default.
- W2891784861 hasConcept C33923547 @default.
- W2891784861 hasConcept C41008148 @default.
- W2891784861 hasConcept C50644808 @default.
- W2891784861 hasConcept C61797465 @default.
- W2891784861 hasConcept C62520636 @default.
- W2891784861 hasConcept C8880873 @default.
- W2891784861 hasConceptScore W2891784861C105795698 @default.
- W2891784861 hasConceptScore W2891784861C11413529 @default.
- W2891784861 hasConceptScore W2891784861C119857082 @default.
- W2891784861 hasConceptScore W2891784861C121332964 @default.
- W2891784861 hasConceptScore W2891784861C139945424 @default.
- W2891784861 hasConceptScore W2891784861C144024400 @default.
- W2891784861 hasConceptScore W2891784861C147168706 @default.
- W2891784861 hasConceptScore W2891784861C149923435 @default.
- W2891784861 hasConceptScore W2891784861C154945302 @default.
- W2891784861 hasConceptScore W2891784861C176066374 @default.
- W2891784861 hasConceptScore W2891784861C2908647359 @default.
- W2891784861 hasConceptScore W2891784861C33923547 @default.
- W2891784861 hasConceptScore W2891784861C41008148 @default.
- W2891784861 hasConceptScore W2891784861C50644808 @default.
- W2891784861 hasConceptScore W2891784861C61797465 @default.
- W2891784861 hasConceptScore W2891784861C62520636 @default.
- W2891784861 hasConceptScore W2891784861C8880873 @default.
- W2891784861 hasLocation W28917848611 @default.
- W2891784861 hasOpenAccess W2891784861 @default.
- W2891784861 hasPrimaryLocation W28917848611 @default.
- W2891784861 hasRelatedWork W2359549665 @default.
- W2891784861 hasRelatedWork W2375916175 @default.
- W2891784861 hasRelatedWork W2382761789 @default.
- W2891784861 hasRelatedWork W2386058197 @default.
- W2891784861 hasRelatedWork W2392110728 @default.
- W2891784861 hasRelatedWork W2393006541 @default.
- W2891784861 hasRelatedWork W2995227436 @default.
- W2891784861 hasRelatedWork W4225307033 @default.
- W2891784861 hasRelatedWork W4281693556 @default.
- W2891784861 hasRelatedWork W1629725936 @default.
- W2891784861 isParatext "false" @default.
- W2891784861 isRetracted "false" @default.
- W2891784861 magId "2891784861" @default.
- W2891784861 workType "book-chapter" @default.