Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891786774> ?p ?o ?g. }
- W2891786774 endingPage "e12868" @default.
- W2891786774 startingPage "e12868" @default.
- W2891786774 abstract "In this study, different drying conditions were investigated on quality and thermodynamic properties of almond kernel. Experiments were performed using a convection dryer with ultrasound pretreatment in 40, 50, 60, and 70 °C air temperature, 1 m/s air velocity, and duration of ultrasonic pre-treatment of 0 min (for control sample), 10, 20, and 40 min. The drying kinetic of the almond kernel was estimated by 15 mathematical models. Furthermore, Artificial Neural Networks (ANNs) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) were applied to fit the experimental data on the thin layer drying. The lowest and highest values of the effective moisture diffusivity (Deff) was 1.81 × 10−9 and 9.70 × 10−9 m2/s, respectively. Activation energy (Ea) of the samples was obtained between 26.35 and 36.44 kJ/mol. The highest and lowest values of specific energy consumption (SEC) were calculated 561.72 and 169.88 kW hr/kg, respectively. Maximum (13.14%) and the minimum (7.1%) values of shrinkage were achieved at air temperatures of 70 and 40 °C, respectively. The color changing of dried samples was obtained between 9.14 and 17.96. Furthermore, results revealed that the ANFIS model had the high ability to predict the moisture ratio (R2 = 0.9998 and MSE = 0.0003) during drying. As a result, ANFIS model has the highest ability to evaluate all output as compared with other models and ANNs method. Practical applications Algorithms are modern methods that have been successfully applied to solve the various problems and modeling in engineering and science. Drying is one of the oldest procedures to preserve the food quality. Reduction of moisture content to a certain value can be caused to decay and minimize the microbiological activity and deteriorating chemical reactions in agricultural products, respectively. Determination of almond drying process under convective with ultrasound pre-treatment dryer in terms of desirable thermal properties (effective moisture diffusivity and energy consumption) provides the high-quality products. Furthermore, this research can be able to provide a technical basis for almond drying and the related equipment designing." @default.
- W2891786774 created "2018-09-27" @default.
- W2891786774 creator A5024451989 @default.
- W2891786774 creator A5033265627 @default.
- W2891786774 creator A5069580483 @default.
- W2891786774 creator A5073493992 @default.
- W2891786774 creator A5082199968 @default.
- W2891786774 date "2018-09-19" @default.
- W2891786774 modified "2023-09-27" @default.
- W2891786774 title "The effect of ultrasound pre-treatment on quality, drying, and thermodynamic attributes of almond kernel under convective dryer using ANNs and ANFIS network" @default.
- W2891786774 cites W1157421975 @default.
- W2891786774 cites W1485792138 @default.
- W2891786774 cites W1563240451 @default.
- W2891786774 cites W1620324776 @default.
- W2891786774 cites W1676443887 @default.
- W2891786774 cites W1893761687 @default.
- W2891786774 cites W1921914306 @default.
- W2891786774 cites W1954285379 @default.
- W2891786774 cites W1975373050 @default.
- W2891786774 cites W1975419570 @default.
- W2891786774 cites W1978962631 @default.
- W2891786774 cites W1987152320 @default.
- W2891786774 cites W1993183509 @default.
- W2891786774 cites W2010002813 @default.
- W2891786774 cites W2022092281 @default.
- W2891786774 cites W2024928411 @default.
- W2891786774 cites W2025723894 @default.
- W2891786774 cites W2029822389 @default.
- W2891786774 cites W2043161931 @default.
- W2891786774 cites W2052978337 @default.
- W2891786774 cites W2063443680 @default.
- W2891786774 cites W2065788870 @default.
- W2891786774 cites W2080788946 @default.
- W2891786774 cites W2092189870 @default.
- W2891786774 cites W2120789962 @default.
- W2891786774 cites W2157146120 @default.
- W2891786774 cites W2170572774 @default.
- W2891786774 cites W2192622361 @default.
- W2891786774 cites W2206030634 @default.
- W2891786774 cites W2210188463 @default.
- W2891786774 cites W2217853652 @default.
- W2891786774 cites W2252517898 @default.
- W2891786774 cites W2266981397 @default.
- W2891786774 cites W2290118833 @default.
- W2891786774 cites W2308303645 @default.
- W2891786774 cites W2315114903 @default.
- W2891786774 cites W2342722404 @default.
- W2891786774 cites W2345134774 @default.
- W2891786774 cites W2464175152 @default.
- W2891786774 cites W2470505354 @default.
- W2891786774 cites W2472252641 @default.
- W2891786774 cites W2488598639 @default.
- W2891786774 cites W2507988572 @default.
- W2891786774 cites W2513754246 @default.
- W2891786774 cites W2514973986 @default.
- W2891786774 cites W2525325526 @default.
- W2891786774 cites W2526581325 @default.
- W2891786774 cites W2528574811 @default.
- W2891786774 cites W2531137268 @default.
- W2891786774 cites W2551858752 @default.
- W2891786774 cites W2552772635 @default.
- W2891786774 cites W2559066004 @default.
- W2891786774 cites W2565114360 @default.
- W2891786774 cites W2577434909 @default.
- W2891786774 cites W2584725537 @default.
- W2891786774 cites W2605338151 @default.
- W2891786774 cites W2608065143 @default.
- W2891786774 cites W2621802029 @default.
- W2891786774 cites W2756091074 @default.
- W2891786774 cites W2761110252 @default.
- W2891786774 cites W2762292047 @default.
- W2891786774 cites W2768073047 @default.
- W2891786774 cites W2777025184 @default.
- W2891786774 cites W2782830675 @default.
- W2891786774 cites W2791120283 @default.
- W2891786774 cites W2791944337 @default.
- W2891786774 cites W2794066886 @default.
- W2891786774 cites W2804463151 @default.
- W2891786774 cites W2804521197 @default.
- W2891786774 cites W765882773 @default.
- W2891786774 doi "https://doi.org/10.1111/jfpe.12868" @default.
- W2891786774 hasPublicationYear "2018" @default.
- W2891786774 type Work @default.
- W2891786774 sameAs 2891786774 @default.
- W2891786774 citedByCount "64" @default.
- W2891786774 countsByYear W28917867742019 @default.
- W2891786774 countsByYear W28917867742020 @default.
- W2891786774 countsByYear W28917867742021 @default.
- W2891786774 countsByYear W28917867742022 @default.
- W2891786774 countsByYear W28917867742023 @default.
- W2891786774 crossrefType "journal-article" @default.
- W2891786774 hasAuthorship W2891786774A5024451989 @default.
- W2891786774 hasAuthorship W2891786774A5033265627 @default.
- W2891786774 hasAuthorship W2891786774A5069580483 @default.
- W2891786774 hasAuthorship W2891786774A5073493992 @default.
- W2891786774 hasAuthorship W2891786774A5082199968 @default.
- W2891786774 hasConcept C105795698 @default.
- W2891786774 hasConcept C121332964 @default.