Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891787830> ?p ?o ?g. }
- W2891787830 endingPage "370" @default.
- W2891787830 startingPage "339" @default.
- W2891787830 abstract "For the prediction of exchange rate, this paper proposes a hybrid learning frame work model which is a joint estimation of On-Line Sequential Extreme Learning Machine (OS-ELM) along with optimized feature reduction using Krill Herd (KH). The proposed learning scheme is compared with Extreme Learning Machine (ELM) and Recurrent Back Propagation Neural Network (RBPNN), considering three factors such as; without feature reduction, with statistical based feature reduction using Principal Component Analysis (PCA) and with optimized feature reduction techniques such as KH, Bacteria Foraging Optimization (BFO) and Particle Swarm Optimization (PSO). The models are applied over USD/INR, USD/EURO, YEN/INR and SGD/INR, constructed using technical indicators and statistical measures considering 3, 5, 7, 12 and 15 as window sizes. The results of comparisons of different performance measures in testing phase and MSE in training process demonstrate that the proposed OSELM-KH exchange rate prediction model is potentiality superior compared to others." @default.
- W2891787830 created "2018-09-27" @default.
- W2891787830 creator A5018486220 @default.
- W2891787830 creator A5034201601 @default.
- W2891787830 creator A5060243836 @default.
- W2891787830 creator A5084704835 @default.
- W2891787830 date "2019-01-01" @default.
- W2891787830 modified "2023-10-14" @default.
- W2891787830 title "An optimized feature reduction based currency forecasting model exploring the online sequential extreme learning machine and krill herd strategies" @default.
- W2891787830 cites W1152476827 @default.
- W2891787830 cites W1964999599 @default.
- W2891787830 cites W1980836123 @default.
- W2891787830 cites W1981181340 @default.
- W2891787830 cites W1985460844 @default.
- W2891787830 cites W1993643085 @default.
- W2891787830 cites W2003961265 @default.
- W2891787830 cites W2008442094 @default.
- W2891787830 cites W2022006693 @default.
- W2891787830 cites W2038147640 @default.
- W2891787830 cites W2039331278 @default.
- W2891787830 cites W2040604977 @default.
- W2891787830 cites W2050599941 @default.
- W2891787830 cites W2059852492 @default.
- W2891787830 cites W2061684001 @default.
- W2891787830 cites W2066505698 @default.
- W2891787830 cites W2090902788 @default.
- W2891787830 cites W2092641980 @default.
- W2891787830 cites W2094304287 @default.
- W2891787830 cites W2103545758 @default.
- W2891787830 cites W2124098825 @default.
- W2891787830 cites W2158054309 @default.
- W2891787830 cites W2158960338 @default.
- W2891787830 cites W2165434809 @default.
- W2891787830 cites W2168618665 @default.
- W2891787830 cites W2187150571 @default.
- W2891787830 cites W2285855825 @default.
- W2891787830 cites W2293634267 @default.
- W2891787830 cites W2342935826 @default.
- W2891787830 cites W746481651 @default.
- W2891787830 doi "https://doi.org/10.1016/j.physa.2018.09.021" @default.
- W2891787830 hasPublicationYear "2019" @default.
- W2891787830 type Work @default.
- W2891787830 sameAs 2891787830 @default.
- W2891787830 citedByCount "18" @default.
- W2891787830 countsByYear W28917878302019 @default.
- W2891787830 countsByYear W28917878302020 @default.
- W2891787830 countsByYear W28917878302021 @default.
- W2891787830 countsByYear W28917878302022 @default.
- W2891787830 countsByYear W28917878302023 @default.
- W2891787830 crossrefType "journal-article" @default.
- W2891787830 hasAuthorship W2891787830A5018486220 @default.
- W2891787830 hasAuthorship W2891787830A5034201601 @default.
- W2891787830 hasAuthorship W2891787830A5060243836 @default.
- W2891787830 hasAuthorship W2891787830A5084704835 @default.
- W2891787830 hasConcept C10485038 @default.
- W2891787830 hasConcept C111335779 @default.
- W2891787830 hasConcept C119857082 @default.
- W2891787830 hasConcept C12267149 @default.
- W2891787830 hasConcept C138885662 @default.
- W2891787830 hasConcept C154945302 @default.
- W2891787830 hasConcept C2524010 @default.
- W2891787830 hasConcept C27438332 @default.
- W2891787830 hasConcept C2776401178 @default.
- W2891787830 hasConcept C2780150128 @default.
- W2891787830 hasConcept C33923547 @default.
- W2891787830 hasConcept C41008148 @default.
- W2891787830 hasConcept C41895202 @default.
- W2891787830 hasConcept C50644808 @default.
- W2891787830 hasConcept C85617194 @default.
- W2891787830 hasConceptScore W2891787830C10485038 @default.
- W2891787830 hasConceptScore W2891787830C111335779 @default.
- W2891787830 hasConceptScore W2891787830C119857082 @default.
- W2891787830 hasConceptScore W2891787830C12267149 @default.
- W2891787830 hasConceptScore W2891787830C138885662 @default.
- W2891787830 hasConceptScore W2891787830C154945302 @default.
- W2891787830 hasConceptScore W2891787830C2524010 @default.
- W2891787830 hasConceptScore W2891787830C27438332 @default.
- W2891787830 hasConceptScore W2891787830C2776401178 @default.
- W2891787830 hasConceptScore W2891787830C2780150128 @default.
- W2891787830 hasConceptScore W2891787830C33923547 @default.
- W2891787830 hasConceptScore W2891787830C41008148 @default.
- W2891787830 hasConceptScore W2891787830C41895202 @default.
- W2891787830 hasConceptScore W2891787830C50644808 @default.
- W2891787830 hasConceptScore W2891787830C85617194 @default.
- W2891787830 hasLocation W28917878301 @default.
- W2891787830 hasOpenAccess W2891787830 @default.
- W2891787830 hasPrimaryLocation W28917878301 @default.
- W2891787830 hasRelatedWork W2901921070 @default.
- W2891787830 hasRelatedWork W2969890106 @default.
- W2891787830 hasRelatedWork W3021218460 @default.
- W2891787830 hasRelatedWork W3033561277 @default.
- W2891787830 hasRelatedWork W3134233996 @default.
- W2891787830 hasRelatedWork W3185179407 @default.
- W2891787830 hasRelatedWork W3194539120 @default.
- W2891787830 hasRelatedWork W4283697347 @default.
- W2891787830 hasRelatedWork W4320060020 @default.
- W2891787830 hasRelatedWork W4362499384 @default.
- W2891787830 hasVolume "513" @default.