Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891798103> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2891798103 endingPage "405" @default.
- W2891798103 startingPage "398" @default.
- W2891798103 abstract "Magnetic resonance fingerprinting (MRF) is a novel quantitative imaging technique that allows simultaneous measurements of multiple important tissue properties in human body, e.g., T1 and T2 relaxation times. While MRF has demonstrated better scan efficiency as compared to conventional quantitative imaging techniques, further acceleration is desired, especially for certain subjects such as infants and young children. However, the conventional MRF framework only uses a simple template matching algorithm to quantify tissue properties, without considering the underlying spatial association among pixels in MRF signals. In this work, we aim to accelerate MRF acquisition by developing a new post-processing method that allows accurate quantification of tissue properties with fewer sampling data. Moreover, to improve the accuracy in quantification, the MRF signals from multiple surrounding pixels are used together to better estimate tissue properties at the central target pixel, which was simply done with the signal only from the target pixel in the original template matching method. In particular, a deep learning model, i.e., U-Net, is used to learn the mapping from the MRF signal evolutions to the tissue property map. To further reduce the network size of U-Net, principal component analysis (PCA) is used to reduce the dimensionality of the input signals. Based on in vivo brain data, our method can achieve accurate quantification for both T1 and T2 by using only 25% time points, which are four times of acceleration in data acquisition compared to the original template matching method." @default.
- W2891798103 created "2018-09-27" @default.
- W2891798103 creator A5000937401 @default.
- W2891798103 creator A5006302877 @default.
- W2891798103 creator A5050560717 @default.
- W2891798103 creator A5062819602 @default.
- W2891798103 creator A5077201305 @default.
- W2891798103 creator A5085462851 @default.
- W2891798103 date "2018-01-01" @default.
- W2891798103 modified "2023-09-27" @default.
- W2891798103 title "Deep Learning for Fast and Spatially-Constrained Tissue Quantification from Highly-Undersampled Data in Magnetic Resonance Fingerprinting (MRF)" @default.
- W2891798103 cites W1901129140 @default.
- W2891798103 cites W1974603254 @default.
- W2891798103 cites W1975729994 @default.
- W2891798103 cites W2012174904 @default.
- W2891798103 cites W2020976264 @default.
- W2891798103 cites W2061708033 @default.
- W2891798103 cites W2144288697 @default.
- W2891798103 cites W2937047179 @default.
- W2891798103 doi "https://doi.org/10.1007/978-3-030-00919-9_46" @default.
- W2891798103 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6438617" @default.
- W2891798103 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30931435" @default.
- W2891798103 hasPublicationYear "2018" @default.
- W2891798103 type Work @default.
- W2891798103 sameAs 2891798103 @default.
- W2891798103 citedByCount "4" @default.
- W2891798103 countsByYear W28917981032019 @default.
- W2891798103 countsByYear W28917981032023 @default.
- W2891798103 crossrefType "book-chapter" @default.
- W2891798103 hasAuthorship W2891798103A5000937401 @default.
- W2891798103 hasAuthorship W2891798103A5006302877 @default.
- W2891798103 hasAuthorship W2891798103A5050560717 @default.
- W2891798103 hasAuthorship W2891798103A5062819602 @default.
- W2891798103 hasAuthorship W2891798103A5077201305 @default.
- W2891798103 hasAuthorship W2891798103A5085462851 @default.
- W2891798103 hasBestOaLocation W28917981032 @default.
- W2891798103 hasConcept C105795698 @default.
- W2891798103 hasConcept C106131492 @default.
- W2891798103 hasConcept C111030470 @default.
- W2891798103 hasConcept C115961682 @default.
- W2891798103 hasConcept C140779682 @default.
- W2891798103 hasConcept C153180895 @default.
- W2891798103 hasConcept C154945302 @default.
- W2891798103 hasConcept C158096908 @default.
- W2891798103 hasConcept C160633673 @default.
- W2891798103 hasConcept C165064840 @default.
- W2891798103 hasConcept C199360897 @default.
- W2891798103 hasConcept C27438332 @default.
- W2891798103 hasConcept C2779843651 @default.
- W2891798103 hasConcept C31972630 @default.
- W2891798103 hasConcept C33923547 @default.
- W2891798103 hasConcept C41008148 @default.
- W2891798103 hasConceptScore W2891798103C105795698 @default.
- W2891798103 hasConceptScore W2891798103C106131492 @default.
- W2891798103 hasConceptScore W2891798103C111030470 @default.
- W2891798103 hasConceptScore W2891798103C115961682 @default.
- W2891798103 hasConceptScore W2891798103C140779682 @default.
- W2891798103 hasConceptScore W2891798103C153180895 @default.
- W2891798103 hasConceptScore W2891798103C154945302 @default.
- W2891798103 hasConceptScore W2891798103C158096908 @default.
- W2891798103 hasConceptScore W2891798103C160633673 @default.
- W2891798103 hasConceptScore W2891798103C165064840 @default.
- W2891798103 hasConceptScore W2891798103C199360897 @default.
- W2891798103 hasConceptScore W2891798103C27438332 @default.
- W2891798103 hasConceptScore W2891798103C2779843651 @default.
- W2891798103 hasConceptScore W2891798103C31972630 @default.
- W2891798103 hasConceptScore W2891798103C33923547 @default.
- W2891798103 hasConceptScore W2891798103C41008148 @default.
- W2891798103 hasLocation W28917981031 @default.
- W2891798103 hasLocation W28917981032 @default.
- W2891798103 hasLocation W28917981033 @default.
- W2891798103 hasLocation W28917981034 @default.
- W2891798103 hasOpenAccess W2891798103 @default.
- W2891798103 hasPrimaryLocation W28917981031 @default.
- W2891798103 hasRelatedWork W1995188412 @default.
- W2891798103 hasRelatedWork W2040854736 @default.
- W2891798103 hasRelatedWork W2090093270 @default.
- W2891798103 hasRelatedWork W2117070652 @default.
- W2891798103 hasRelatedWork W2128391139 @default.
- W2891798103 hasRelatedWork W2134786086 @default.
- W2891798103 hasRelatedWork W2373807803 @default.
- W2891798103 hasRelatedWork W2380927352 @default.
- W2891798103 hasRelatedWork W2391245565 @default.
- W2891798103 hasRelatedWork W2542880803 @default.
- W2891798103 isParatext "false" @default.
- W2891798103 isRetracted "false" @default.
- W2891798103 magId "2891798103" @default.
- W2891798103 workType "book-chapter" @default.