Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891799647> ?p ?o ?g. }
- W2891799647 endingPage "1072" @default.
- W2891799647 startingPage "1059" @default.
- W2891799647 abstract "Drone autopilots are naturally suited for real-time iceberg tracking as they measure position and orientation (pitch, roll, and heading) and they transmit these data to a ground station. We powered an ArduPilot Mega (APM) 2.6 with a 5V 11?Ah lithium ion battery (a smartphone power bank), placed the APM and battery in a waterproof sportsman’s box, and tossed the box and its contents by hand onto an 80?m-long iceberg from an 8 m boat. The data stream could be viewed on a laptop, which greatly enhanced safety while collecting conductivity/temperature/depth (CTD) profiles from the small boat in the iceberg’s vicinity. The 10?s position data allowed us to compute the distance of each CTD profile to the iceberg, which is necessary to determine if a given CTD profile was collected within the iceberg’s meltwater plume. The APM position data greatly reduced position uncertainty when compared to 5 min position data obtained from a Spot Trace unit. The APM functioned for over 10 h without depleting the battery. We describe the specific hardware used and the software settings necessary to use the APM as a real-time iceberg tracker. Furthermore, the methods described here apply to all Ardupilot-compatible autopilots. Given the low cost ($90) and ease of use, drone autopilots like the APM should be included as another tool for studying iceberg motion and for enhancing safety of marine operations.•Commercial off-the-shelf iceberg trackers are typically configured to record positions over relatively long intervals (months to years) and are not well-suited for short-term (hours to few days), high-frequency monitoring•Drone autopilots are cheap and provide high-frequency (>1?Hz) and real-time information about iceberg drift and orientation•Drone autopilots and ground control software can be easily adapted to studies of iceberg-ocean interactions and operational iceberg management" @default.
- W2891799647 created "2018-09-27" @default.
- W2891799647 creator A5010349584 @default.
- W2891799647 creator A5030729455 @default.
- W2891799647 date "2018-01-01" @default.
- W2891799647 modified "2023-10-14" @default.
- W2891799647 title "Adapting open-source drone autopilots for real-time iceberg observations" @default.
- W2891799647 cites W1916376402 @default.
- W2891799647 cites W1925854929 @default.
- W2891799647 cites W1966301784 @default.
- W2891799647 cites W1969203871 @default.
- W2891799647 cites W1977454293 @default.
- W2891799647 cites W1982692691 @default.
- W2891799647 cites W1990148839 @default.
- W2891799647 cites W1990308012 @default.
- W2891799647 cites W1998943389 @default.
- W2891799647 cites W2016281628 @default.
- W2891799647 cites W2041789919 @default.
- W2891799647 cites W2042450344 @default.
- W2891799647 cites W2057600133 @default.
- W2891799647 cites W2063236114 @default.
- W2891799647 cites W2071115020 @default.
- W2891799647 cites W2073272161 @default.
- W2891799647 cites W2075969703 @default.
- W2891799647 cites W2076151976 @default.
- W2891799647 cites W2081306264 @default.
- W2891799647 cites W2148497295 @default.
- W2891799647 cites W2152420336 @default.
- W2891799647 cites W2160320247 @default.
- W2891799647 cites W2188961938 @default.
- W2891799647 cites W2253409621 @default.
- W2891799647 cites W2491688576 @default.
- W2891799647 cites W2508225579 @default.
- W2891799647 cites W2563919718 @default.
- W2891799647 cites W2745587944 @default.
- W2891799647 cites W2750729136 @default.
- W2891799647 cites W2789835479 @default.
- W2891799647 cites W2789880387 @default.
- W2891799647 cites W2799341159 @default.
- W2891799647 cites W2801439336 @default.
- W2891799647 cites W359604221 @default.
- W2891799647 doi "https://doi.org/10.1016/j.mex.2018.09.003" @default.
- W2891799647 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6139390" @default.
- W2891799647 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30225206" @default.
- W2891799647 hasPublicationYear "2018" @default.
- W2891799647 type Work @default.
- W2891799647 sameAs 2891799647 @default.
- W2891799647 citedByCount "14" @default.
- W2891799647 countsByYear W28917996472019 @default.
- W2891799647 countsByYear W28917996472020 @default.
- W2891799647 countsByYear W28917996472021 @default.
- W2891799647 countsByYear W28917996472022 @default.
- W2891799647 countsByYear W28917996472023 @default.
- W2891799647 crossrefType "journal-article" @default.
- W2891799647 hasAuthorship W2891799647A5010349584 @default.
- W2891799647 hasAuthorship W2891799647A5030729455 @default.
- W2891799647 hasBestOaLocation W28917996471 @default.
- W2891799647 hasConcept C10138342 @default.
- W2891799647 hasConcept C111368507 @default.
- W2891799647 hasConcept C111919701 @default.
- W2891799647 hasConcept C121332964 @default.
- W2891799647 hasConcept C12481700 @default.
- W2891799647 hasConcept C127313418 @default.
- W2891799647 hasConcept C127413603 @default.
- W2891799647 hasConcept C136894858 @default.
- W2891799647 hasConcept C162324750 @default.
- W2891799647 hasConcept C163258240 @default.
- W2891799647 hasConcept C183121708 @default.
- W2891799647 hasConcept C198082294 @default.
- W2891799647 hasConcept C199104240 @default.
- W2891799647 hasConcept C2780008327 @default.
- W2891799647 hasConcept C41008148 @default.
- W2891799647 hasConcept C44154836 @default.
- W2891799647 hasConcept C54355233 @default.
- W2891799647 hasConcept C555008776 @default.
- W2891799647 hasConcept C59519942 @default.
- W2891799647 hasConcept C62520636 @default.
- W2891799647 hasConcept C76155785 @default.
- W2891799647 hasConcept C79403827 @default.
- W2891799647 hasConcept C86803240 @default.
- W2891799647 hasConceptScore W2891799647C10138342 @default.
- W2891799647 hasConceptScore W2891799647C111368507 @default.
- W2891799647 hasConceptScore W2891799647C111919701 @default.
- W2891799647 hasConceptScore W2891799647C121332964 @default.
- W2891799647 hasConceptScore W2891799647C12481700 @default.
- W2891799647 hasConceptScore W2891799647C127313418 @default.
- W2891799647 hasConceptScore W2891799647C127413603 @default.
- W2891799647 hasConceptScore W2891799647C136894858 @default.
- W2891799647 hasConceptScore W2891799647C162324750 @default.
- W2891799647 hasConceptScore W2891799647C163258240 @default.
- W2891799647 hasConceptScore W2891799647C183121708 @default.
- W2891799647 hasConceptScore W2891799647C198082294 @default.
- W2891799647 hasConceptScore W2891799647C199104240 @default.
- W2891799647 hasConceptScore W2891799647C2780008327 @default.
- W2891799647 hasConceptScore W2891799647C41008148 @default.
- W2891799647 hasConceptScore W2891799647C44154836 @default.
- W2891799647 hasConceptScore W2891799647C54355233 @default.
- W2891799647 hasConceptScore W2891799647C555008776 @default.