Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891809352> ?p ?o ?g. }
- W2891809352 abstract "P-wave and S-wave velocities are vital parameters for the processing of seismic data and may be useful for geotechnical studies used in mine planning if such data were collected more often. Seismic velocity data from boreholes increase the robustness and accuracy of the images obtained by relatively costly seismic surface reflection surveys. However, sonic logs are rarely acquired in boreholes in-and-near base metal and precious metal mineral deposits until a seismic survey is planned, and only a few new holes are typically logged because the many hundreds of holes previously drilled are no longer accessible. If there are any pre-existing petrophysical log data, then the data are likely to consist of density, magnetic susceptibility, resistivity and natural gamma logs. Thus, it would be of great benefit to be able to predict the velocities from other data that is more readily available. In this work, we utilize fuzzy c-means clustering to build a “fuzzy” relationship between sonic velocities and other petrophysical borehole data to predict P-wave and S-wave velocity. If boreholes with sonic data intersect most of the important geological units in the area of interest, then the cluster model developed may be applied to other boreholes that do not have sonic data, but do have other petrophysical data to be used for predicting the sonic logs. These predicted sonic logs may then be used to create a three-dimensional volume of velocity with greater detail than would otherwise be created by the interpolation of measured sonic data from sparsely located holes. Our methodology was tested on a dataset from the Kevitsa Ni-Cu-PGE deposit in northern Finland. The dataset includes five boreholes with wireline logs of Pwave velocity, S-wave velocity, density, natural gamma, magnetic susceptibility and resistivity that were used for cluster analysis. The best combination of input data for the training section was chosen by trial and error, but differences in themisfit between the various training datasets were not particularly significant. Our results show that the fuzzy c-means method can predict sonic velocities from other borehole data very well, and the fuzzy c-meansmethod works better than using multiple linear-regression fitting. The predicted P-wave velocity data are of sufficient quality to robustly add low-frequency information for seismic impedance inversion and should provide better velocity models for accurate depth conversion of seismic reflection data." @default.
- W2891809352 created "2018-09-27" @default.
- W2891809352 creator A5002272857 @default.
- W2891809352 creator A5063674653 @default.
- W2891809352 creator A5077299325 @default.
- W2891809352 date "2018-09-30" @default.
- W2891809352 modified "2023-09-27" @default.
- W2891809352 title "Prediction of sonic velocities from other borehole data: An example from the Kevitsa mine site, northern Finland" @default.
- W2891809352 cites W1606082823 @default.
- W2891809352 cites W1935497314 @default.
- W2891809352 cites W1968519627 @default.
- W2891809352 cites W1987233112 @default.
- W2891809352 cites W1996747841 @default.
- W2891809352 cites W2006833327 @default.
- W2891809352 cites W2007478263 @default.
- W2891809352 cites W2015186529 @default.
- W2891809352 cites W2016415759 @default.
- W2891809352 cites W2017547311 @default.
- W2891809352 cites W2018231588 @default.
- W2891809352 cites W2019207321 @default.
- W2891809352 cites W2029656674 @default.
- W2891809352 cites W2031366214 @default.
- W2891809352 cites W2041551945 @default.
- W2891809352 cites W2070865291 @default.
- W2891809352 cites W2074197013 @default.
- W2891809352 cites W2088420466 @default.
- W2891809352 cites W2089667000 @default.
- W2891809352 cites W2113076747 @default.
- W2891809352 cites W2129900710 @default.
- W2891809352 cites W2136226282 @default.
- W2891809352 cites W2154224004 @default.
- W2891809352 cites W2169615413 @default.
- W2891809352 cites W2421928996 @default.
- W2891809352 cites W2464864942 @default.
- W2891809352 cites W2479790347 @default.
- W2891809352 cites W2512556101 @default.
- W2891809352 cites W4211007335 @default.
- W2891809352 doi "https://doi.org/10.1111/1365-2478.12687" @default.
- W2891809352 hasPublicationYear "2018" @default.
- W2891809352 type Work @default.
- W2891809352 sameAs 2891809352 @default.
- W2891809352 citedByCount "2" @default.
- W2891809352 countsByYear W28918093522019 @default.
- W2891809352 crossrefType "journal-article" @default.
- W2891809352 hasAuthorship W2891809352A5002272857 @default.
- W2891809352 hasAuthorship W2891809352A5063674653 @default.
- W2891809352 hasAuthorship W2891809352A5077299325 @default.
- W2891809352 hasConcept C121332964 @default.
- W2891809352 hasConcept C125171110 @default.
- W2891809352 hasConcept C127313418 @default.
- W2891809352 hasConcept C150560799 @default.
- W2891809352 hasConcept C153294291 @default.
- W2891809352 hasConcept C159719176 @default.
- W2891809352 hasConcept C161028810 @default.
- W2891809352 hasConcept C165205528 @default.
- W2891809352 hasConcept C170152797 @default.
- W2891809352 hasConcept C187320778 @default.
- W2891809352 hasConcept C24552861 @default.
- W2891809352 hasConcept C2777139213 @default.
- W2891809352 hasConcept C34527478 @default.
- W2891809352 hasConcept C35817400 @default.
- W2891809352 hasConcept C39267094 @default.
- W2891809352 hasConcept C46293882 @default.
- W2891809352 hasConcept C6363049 @default.
- W2891809352 hasConcept C6648577 @default.
- W2891809352 hasConcept C77928131 @default.
- W2891809352 hasConcept C8058405 @default.
- W2891809352 hasConceptScore W2891809352C121332964 @default.
- W2891809352 hasConceptScore W2891809352C125171110 @default.
- W2891809352 hasConceptScore W2891809352C127313418 @default.
- W2891809352 hasConceptScore W2891809352C150560799 @default.
- W2891809352 hasConceptScore W2891809352C153294291 @default.
- W2891809352 hasConceptScore W2891809352C159719176 @default.
- W2891809352 hasConceptScore W2891809352C161028810 @default.
- W2891809352 hasConceptScore W2891809352C165205528 @default.
- W2891809352 hasConceptScore W2891809352C170152797 @default.
- W2891809352 hasConceptScore W2891809352C187320778 @default.
- W2891809352 hasConceptScore W2891809352C24552861 @default.
- W2891809352 hasConceptScore W2891809352C2777139213 @default.
- W2891809352 hasConceptScore W2891809352C34527478 @default.
- W2891809352 hasConceptScore W2891809352C35817400 @default.
- W2891809352 hasConceptScore W2891809352C39267094 @default.
- W2891809352 hasConceptScore W2891809352C46293882 @default.
- W2891809352 hasConceptScore W2891809352C6363049 @default.
- W2891809352 hasConceptScore W2891809352C6648577 @default.
- W2891809352 hasConceptScore W2891809352C77928131 @default.
- W2891809352 hasConceptScore W2891809352C8058405 @default.
- W2891809352 hasLocation W28918093521 @default.
- W2891809352 hasOpenAccess W2891809352 @default.
- W2891809352 hasPrimaryLocation W28918093521 @default.
- W2891809352 hasRelatedWork W1977986676 @default.
- W2891809352 hasRelatedWork W1985376418 @default.
- W2891809352 hasRelatedWork W1997357068 @default.
- W2891809352 hasRelatedWork W2158921314 @default.
- W2891809352 hasRelatedWork W2588463878 @default.
- W2891809352 hasRelatedWork W2750367269 @default.
- W2891809352 hasRelatedWork W2891809352 @default.
- W2891809352 hasRelatedWork W2998358613 @default.
- W2891809352 hasRelatedWork W3198100288 @default.
- W2891809352 hasRelatedWork W4235955667 @default.