Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891810618> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2891810618 endingPage "349" @default.
- W2891810618 startingPage "340" @default.
- W2891810618 abstract "Abstract A controller is usually used to maximize the energy absorption of wave energy converter. Despite the development of various control strategies, the practical implementation of wave energy control is still difficult since the control inputs are the future wave forces. In this work, the artificial intelligence technique is adopted to tackle this problem. A multi-layer artificial neural network is developed and trained by the deep machine learning algorithm to forecast the short-term wave forces. The model predictive control strategy is used to implement real-time latching control action to a heaving point-absorber. Simulation results show that the average energy absorption is increased substantially with the controller. Since the future wave forces are predicted, the controller is applicable to a full-scale wave energy converter in practice. Further analysis indicates that the prediction error has a negative effect on the control performance, leading to the reduction of energy absorption." @default.
- W2891810618 created "2018-09-27" @default.
- W2891810618 creator A5019879443 @default.
- W2891810618 creator A5046420979 @default.
- W2891810618 creator A5077288774 @default.
- W2891810618 date "2018-12-01" @default.
- W2891810618 modified "2023-10-17" @default.
- W2891810618 title "Maximization of energy absorption for a wave energy converter using the deep machine learning" @default.
- W2891810618 cites W1942868802 @default.
- W2891810618 cites W1969320045 @default.
- W2891810618 cites W1990573972 @default.
- W2891810618 cites W2004349053 @default.
- W2891810618 cites W2017316460 @default.
- W2891810618 cites W2031243078 @default.
- W2891810618 cites W2041968280 @default.
- W2891810618 cites W2046882746 @default.
- W2891810618 cites W2047277230 @default.
- W2891810618 cites W2049495775 @default.
- W2891810618 cites W2062265377 @default.
- W2891810618 cites W2136922672 @default.
- W2891810618 cites W2226172712 @default.
- W2891810618 cites W2557119204 @default.
- W2891810618 cites W2570502259 @default.
- W2891810618 cites W2579092231 @default.
- W2891810618 cites W2605521807 @default.
- W2891810618 cites W2747519573 @default.
- W2891810618 cites W2757864354 @default.
- W2891810618 cites W2773602188 @default.
- W2891810618 cites W2784239585 @default.
- W2891810618 cites W915858735 @default.
- W2891810618 doi "https://doi.org/10.1016/j.energy.2018.09.093" @default.
- W2891810618 hasPublicationYear "2018" @default.
- W2891810618 type Work @default.
- W2891810618 sameAs 2891810618 @default.
- W2891810618 citedByCount "62" @default.
- W2891810618 countsByYear W28918106182019 @default.
- W2891810618 countsByYear W28918106182020 @default.
- W2891810618 countsByYear W28918106182021 @default.
- W2891810618 countsByYear W28918106182022 @default.
- W2891810618 countsByYear W28918106182023 @default.
- W2891810618 crossrefType "journal-article" @default.
- W2891810618 hasAuthorship W2891810618A5019879443 @default.
- W2891810618 hasAuthorship W2891810618A5046420979 @default.
- W2891810618 hasAuthorship W2891810618A5077288774 @default.
- W2891810618 hasBestOaLocation W28918106182 @default.
- W2891810618 hasConcept C105795698 @default.
- W2891810618 hasConcept C119857082 @default.
- W2891810618 hasConcept C121332964 @default.
- W2891810618 hasConcept C125287762 @default.
- W2891810618 hasConcept C126255220 @default.
- W2891810618 hasConcept C154945302 @default.
- W2891810618 hasConcept C186370098 @default.
- W2891810618 hasConcept C192562407 @default.
- W2891810618 hasConcept C24890656 @default.
- W2891810618 hasConcept C2776330181 @default.
- W2891810618 hasConcept C2985586866 @default.
- W2891810618 hasConcept C33923547 @default.
- W2891810618 hasConcept C41008148 @default.
- W2891810618 hasConceptScore W2891810618C105795698 @default.
- W2891810618 hasConceptScore W2891810618C119857082 @default.
- W2891810618 hasConceptScore W2891810618C121332964 @default.
- W2891810618 hasConceptScore W2891810618C125287762 @default.
- W2891810618 hasConceptScore W2891810618C126255220 @default.
- W2891810618 hasConceptScore W2891810618C154945302 @default.
- W2891810618 hasConceptScore W2891810618C186370098 @default.
- W2891810618 hasConceptScore W2891810618C192562407 @default.
- W2891810618 hasConceptScore W2891810618C24890656 @default.
- W2891810618 hasConceptScore W2891810618C2776330181 @default.
- W2891810618 hasConceptScore W2891810618C2985586866 @default.
- W2891810618 hasConceptScore W2891810618C33923547 @default.
- W2891810618 hasConceptScore W2891810618C41008148 @default.
- W2891810618 hasFunder F4320322725 @default.
- W2891810618 hasLocation W28918106181 @default.
- W2891810618 hasLocation W28918106182 @default.
- W2891810618 hasOpenAccess W2891810618 @default.
- W2891810618 hasPrimaryLocation W28918106181 @default.
- W2891810618 hasRelatedWork W1605528277 @default.
- W2891810618 hasRelatedWork W2345847332 @default.
- W2891810618 hasRelatedWork W2404390629 @default.
- W2891810618 hasRelatedWork W2891810618 @default.
- W2891810618 hasRelatedWork W2899084033 @default.
- W2891810618 hasRelatedWork W2961085424 @default.
- W2891810618 hasRelatedWork W300852170 @default.
- W2891810618 hasRelatedWork W4286629047 @default.
- W2891810618 hasRelatedWork W4306674287 @default.
- W2891810618 hasRelatedWork W4224009465 @default.
- W2891810618 hasVolume "165" @default.
- W2891810618 isParatext "false" @default.
- W2891810618 isRetracted "false" @default.
- W2891810618 magId "2891810618" @default.
- W2891810618 workType "article" @default.