Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891814210> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2891814210 endingPage "3172" @default.
- W2891814210 startingPage "3172" @default.
- W2891814210 abstract "In a crowded harbor water area, it is a major concern to control ship traffic for assuring safety and maximizing the efficiency of port operations. Vessel Traffic Service (VTS) operators pay much attention to caution areas like ship route intersections or traffic congestion area in which there are some risks of ship collision. They want to control the traffic of the caution area at a proper level to lessen risk. Inertial ship movement makes swift changes in direction and speed difficult. It is hence important to predict future traffic of the caution area earlier on so as to get enough time for control actions on ship movements. In the harbor area, VTS stations collect a large volume of Automatic Identification Service (AIS) sensor data, which contain information about ship movement and ship attributes. This paper proposes a new deep neural network model called Ship Traffic Extraction Network (STENet) to predict the medium-term traffic and long-term traffic of the caution area. The STENet model is trained with AIS sensor data. The STENet model is organized into a hierarchical architecture in which the outputs of the movement and contextual feature extraction modules are concatenated and fed into a prediction module. The movement module extracts the features of overall ship movements with a convolutional neural network. The contextual modules consist of five separated fully-connected neural networks, each of which receives an associated attribute. The separation of feature extraction modules at the front phase helps extract the effective features by preventing unrelated attributes from crosstalking. To evaluate the performance of the proposed model, the developed model is applied to a real AIS sensor dataset, which has been collected over two years at a Korean port called Yeosu. In the experiments, four methods have been compared including two new methods: STENet and VGGNet-based models. For the real AIS sensor dataset, the proposed model has shown 50.65% relative performance improvement on average for the medium-term predictions and 57.65% improvement on average for the long-term predictions over the benchmark method, i.e., the SVR-based method." @default.
- W2891814210 created "2018-09-27" @default.
- W2891814210 creator A5023303608 @default.
- W2891814210 creator A5085290695 @default.
- W2891814210 date "2018-09-19" @default.
- W2891814210 modified "2023-10-06" @default.
- W2891814210 title "Deep Learning-Based Caution Area Traffic Prediction with Automatic Identification System Sensor Data" @default.
- W2891814210 cites W2022603014 @default.
- W2891814210 cites W2037694032 @default.
- W2891814210 cites W2154005716 @default.
- W2891814210 cites W2341014784 @default.
- W2891814210 cites W2589206719 @default.
- W2891814210 cites W2600148249 @default.
- W2891814210 cites W2604951283 @default.
- W2891814210 cites W2614930676 @default.
- W2891814210 cites W2748344138 @default.
- W2891814210 cites W2760851807 @default.
- W2891814210 cites W2780655355 @default.
- W2891814210 cites W2782917559 @default.
- W2891814210 cites W2790646268 @default.
- W2891814210 cites W2794359703 @default.
- W2891814210 cites W2795025207 @default.
- W2891814210 cites W2803191190 @default.
- W2891814210 cites W2808833513 @default.
- W2891814210 cites W2808842749 @default.
- W2891814210 cites W2926609417 @default.
- W2891814210 cites W3134432625 @default.
- W2891814210 doi "https://doi.org/10.3390/s18093172" @default.
- W2891814210 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6165579" @default.
- W2891814210 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30235901" @default.
- W2891814210 hasPublicationYear "2018" @default.
- W2891814210 type Work @default.
- W2891814210 sameAs 2891814210 @default.
- W2891814210 citedByCount "37" @default.
- W2891814210 countsByYear W28918142102019 @default.
- W2891814210 countsByYear W28918142102020 @default.
- W2891814210 countsByYear W28918142102021 @default.
- W2891814210 countsByYear W28918142102022 @default.
- W2891814210 countsByYear W28918142102023 @default.
- W2891814210 crossrefType "journal-article" @default.
- W2891814210 hasAuthorship W2891814210A5023303608 @default.
- W2891814210 hasAuthorship W2891814210A5085290695 @default.
- W2891814210 hasBestOaLocation W28918142101 @default.
- W2891814210 hasConcept C116834253 @default.
- W2891814210 hasConcept C119599485 @default.
- W2891814210 hasConcept C124101348 @default.
- W2891814210 hasConcept C127413603 @default.
- W2891814210 hasConcept C146997752 @default.
- W2891814210 hasConcept C154945302 @default.
- W2891814210 hasConcept C32802771 @default.
- W2891814210 hasConcept C41008148 @default.
- W2891814210 hasConcept C50644808 @default.
- W2891814210 hasConcept C59822182 @default.
- W2891814210 hasConcept C79403827 @default.
- W2891814210 hasConcept C81363708 @default.
- W2891814210 hasConcept C86803240 @default.
- W2891814210 hasConceptScore W2891814210C116834253 @default.
- W2891814210 hasConceptScore W2891814210C119599485 @default.
- W2891814210 hasConceptScore W2891814210C124101348 @default.
- W2891814210 hasConceptScore W2891814210C127413603 @default.
- W2891814210 hasConceptScore W2891814210C146997752 @default.
- W2891814210 hasConceptScore W2891814210C154945302 @default.
- W2891814210 hasConceptScore W2891814210C32802771 @default.
- W2891814210 hasConceptScore W2891814210C41008148 @default.
- W2891814210 hasConceptScore W2891814210C50644808 @default.
- W2891814210 hasConceptScore W2891814210C59822182 @default.
- W2891814210 hasConceptScore W2891814210C79403827 @default.
- W2891814210 hasConceptScore W2891814210C81363708 @default.
- W2891814210 hasConceptScore W2891814210C86803240 @default.
- W2891814210 hasIssue "9" @default.
- W2891814210 hasLocation W28918142101 @default.
- W2891814210 hasLocation W28918142102 @default.
- W2891814210 hasLocation W28918142103 @default.
- W2891814210 hasLocation W28918142104 @default.
- W2891814210 hasLocation W28918142105 @default.
- W2891814210 hasOpenAccess W2891814210 @default.
- W2891814210 hasPrimaryLocation W28918142101 @default.
- W2891814210 hasRelatedWork W2037001003 @default.
- W2891814210 hasRelatedWork W2285788670 @default.
- W2891814210 hasRelatedWork W2521062615 @default.
- W2891814210 hasRelatedWork W2748454020 @default.
- W2891814210 hasRelatedWork W2899084033 @default.
- W2891814210 hasRelatedWork W2901465038 @default.
- W2891814210 hasRelatedWork W2955938200 @default.
- W2891814210 hasRelatedWork W2998526951 @default.
- W2891814210 hasRelatedWork W3119610945 @default.
- W2891814210 hasRelatedWork W3181746755 @default.
- W2891814210 hasVolume "18" @default.
- W2891814210 isParatext "false" @default.
- W2891814210 isRetracted "false" @default.
- W2891814210 magId "2891814210" @default.
- W2891814210 workType "article" @default.