Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891815414> ?p ?o ?g. }
- W2891815414 endingPage "81" @default.
- W2891815414 startingPage "69" @default.
- W2891815414 abstract "Path-based clustering algorithms usually generate clusters by optimizing a criterion function. Most of state-of-the-art optimization methods give a solution close to the global optimum. By analyzing the minimax distance, we find that cluster centers have the minimum density in their own clusters. Inspired by this, we propose an improved path-based clustering algorithm (IPC) by mining the cluster centers of the dataset. IPC solves this problem by the process of elimination since it is difficult to mine these cluster centers directly. The algorithm can achieve the global optimum within O(n2). Experimental results on synthetic datasets show that IPC not only can recognize all kinds of clusters regardless of their shapes, sizes and densities, but also is robust against noises and outliers in the data. More importantly, IPC needs only one parameter (i.e., the number of clusters). Comparing IPC with other clustering algorithms on the real datasets, the experimental results show that IPC outperforms compared clustering algorithms." @default.
- W2891815414 created "2018-09-27" @default.
- W2891815414 creator A5006553214 @default.
- W2891815414 creator A5018969310 @default.
- W2891815414 creator A5020993341 @default.
- W2891815414 creator A5062004258 @default.
- W2891815414 creator A5072961218 @default.
- W2891815414 creator A5088612057 @default.
- W2891815414 date "2019-01-01" @default.
- W2891815414 modified "2023-09-27" @default.
- W2891815414 title "An improved path-based clustering algorithm" @default.
- W2891815414 cites W1894116512 @default.
- W2891815414 cites W1931400479 @default.
- W2891815414 cites W1965680834 @default.
- W2891815414 cites W1965998456 @default.
- W2891815414 cites W1972969203 @default.
- W2891815414 cites W1979312837 @default.
- W2891815414 cites W1990694217 @default.
- W2891815414 cites W2014207237 @default.
- W2891815414 cites W2015245929 @default.
- W2891815414 cites W2017927472 @default.
- W2891815414 cites W2026230245 @default.
- W2891815414 cites W2043386636 @default.
- W2891815414 cites W2044771296 @default.
- W2891815414 cites W2052005199 @default.
- W2891815414 cites W2055828595 @default.
- W2891815414 cites W2066923007 @default.
- W2891815414 cites W2072313203 @default.
- W2891815414 cites W2083620785 @default.
- W2891815414 cites W2084642062 @default.
- W2891815414 cites W2114979880 @default.
- W2891815414 cites W2121947440 @default.
- W2891815414 cites W2125464731 @default.
- W2891815414 cites W2138563650 @default.
- W2891815414 cites W2140095548 @default.
- W2891815414 cites W2140405352 @default.
- W2891815414 cites W2141585940 @default.
- W2891815414 cites W2141830028 @default.
- W2891815414 cites W2156090204 @default.
- W2891815414 cites W2158319614 @default.
- W2891815414 cites W2165232124 @default.
- W2891815414 cites W2165835468 @default.
- W2891815414 cites W2171903410 @default.
- W2891815414 cites W2200999603 @default.
- W2891815414 cites W2268194897 @default.
- W2891815414 cites W2295256067 @default.
- W2891815414 cites W2405759906 @default.
- W2891815414 cites W2462044331 @default.
- W2891815414 cites W2522562629 @default.
- W2891815414 cites W2560587063 @default.
- W2891815414 cites W2582292267 @default.
- W2891815414 cites W2590009741 @default.
- W2891815414 cites W2590749036 @default.
- W2891815414 cites W2736425480 @default.
- W2891815414 doi "https://doi.org/10.1016/j.knosys.2018.08.012" @default.
- W2891815414 hasPublicationYear "2019" @default.
- W2891815414 type Work @default.
- W2891815414 sameAs 2891815414 @default.
- W2891815414 citedByCount "11" @default.
- W2891815414 countsByYear W28918154142019 @default.
- W2891815414 countsByYear W28918154142020 @default.
- W2891815414 countsByYear W28918154142021 @default.
- W2891815414 countsByYear W28918154142022 @default.
- W2891815414 countsByYear W28918154142023 @default.
- W2891815414 crossrefType "journal-article" @default.
- W2891815414 hasAuthorship W2891815414A5006553214 @default.
- W2891815414 hasAuthorship W2891815414A5018969310 @default.
- W2891815414 hasAuthorship W2891815414A5020993341 @default.
- W2891815414 hasAuthorship W2891815414A5062004258 @default.
- W2891815414 hasAuthorship W2891815414A5072961218 @default.
- W2891815414 hasAuthorship W2891815414A5088612057 @default.
- W2891815414 hasConcept C111919701 @default.
- W2891815414 hasConcept C11413529 @default.
- W2891815414 hasConcept C124101348 @default.
- W2891815414 hasConcept C126255220 @default.
- W2891815414 hasConcept C149728462 @default.
- W2891815414 hasConcept C154945302 @default.
- W2891815414 hasConcept C164866538 @default.
- W2891815414 hasConcept C199360897 @default.
- W2891815414 hasConcept C2777735758 @default.
- W2891815414 hasConcept C33704608 @default.
- W2891815414 hasConcept C33923547 @default.
- W2891815414 hasConcept C41008148 @default.
- W2891815414 hasConcept C73555534 @default.
- W2891815414 hasConcept C79337645 @default.
- W2891815414 hasConcept C94641424 @default.
- W2891815414 hasConcept C98045186 @default.
- W2891815414 hasConceptScore W2891815414C111919701 @default.
- W2891815414 hasConceptScore W2891815414C11413529 @default.
- W2891815414 hasConceptScore W2891815414C124101348 @default.
- W2891815414 hasConceptScore W2891815414C126255220 @default.
- W2891815414 hasConceptScore W2891815414C149728462 @default.
- W2891815414 hasConceptScore W2891815414C154945302 @default.
- W2891815414 hasConceptScore W2891815414C164866538 @default.
- W2891815414 hasConceptScore W2891815414C199360897 @default.
- W2891815414 hasConceptScore W2891815414C2777735758 @default.
- W2891815414 hasConceptScore W2891815414C33704608 @default.
- W2891815414 hasConceptScore W2891815414C33923547 @default.