Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891817692> ?p ?o ?g. }
- W2891817692 endingPage "422" @default.
- W2891817692 startingPage "406" @default.
- W2891817692 abstract "We introduce PathGAN, a deep neural network for visual scanpath prediction trained on adversarial examples. A visual scanpath is defined as the sequence of fixation points over an image defined by a human observer with its gaze. PathGAN is composed of two parts, the generator and the discriminator. Both parts extract features from images using off-the-shelf networks, and train recurrent layers to generate or discriminate scanpaths accordingly. In scanpath prediction, the stochastic nature of the data makes it very difficult to generate realistic predictions using supervised learning strategies, but we adopt adversarial training as a suitable alternative. Our experiments prove how PathGAN improves the state of the art of visual scanpath prediction on the iSUN and Salient360! datasets." @default.
- W2891817692 created "2018-09-27" @default.
- W2891817692 creator A5051863471 @default.
- W2891817692 creator A5054973202 @default.
- W2891817692 creator A5073924795 @default.
- W2891817692 creator A5081902636 @default.
- W2891817692 date "2019-01-01" @default.
- W2891817692 modified "2023-10-05" @default.
- W2891817692 title "PathGAN: Visual Scanpath Prediction with Generative Adversarial Networks" @default.
- W2891817692 cites W1510835000 @default.
- W2891817692 cites W1901129140 @default.
- W2891817692 cites W1934890906 @default.
- W2891817692 cites W2078903912 @default.
- W2891817692 cites W2097117768 @default.
- W2891817692 cites W2104296057 @default.
- W2891817692 cites W2108598243 @default.
- W2891817692 cites W2109864487 @default.
- W2891817692 cites W2128272608 @default.
- W2891817692 cites W2135957164 @default.
- W2891817692 cites W2148383759 @default.
- W2891817692 cites W2158983298 @default.
- W2891817692 cites W2192271525 @default.
- W2891817692 cites W2212216676 @default.
- W2891817692 cites W2288514685 @default.
- W2891817692 cites W2298992465 @default.
- W2891817692 cites W2339754110 @default.
- W2891817692 cites W2413779870 @default.
- W2891817692 cites W2442293398 @default.
- W2891817692 cites W2468114283 @default.
- W2891817692 cites W2520859141 @default.
- W2891817692 cites W2581309991 @default.
- W2891817692 cites W2733904738 @default.
- W2891817692 cites W2795350989 @default.
- W2891817692 cites W2801570861 @default.
- W2891817692 cites W2803485280 @default.
- W2891817692 cites W2963073614 @default.
- W2891817692 cites W2963339238 @default.
- W2891817692 cites W2963420272 @default.
- W2891817692 cites W2963828885 @default.
- W2891817692 cites W2964279441 @default.
- W2891817692 doi "https://doi.org/10.1007/978-3-030-11021-5_25" @default.
- W2891817692 hasPublicationYear "2019" @default.
- W2891817692 type Work @default.
- W2891817692 sameAs 2891817692 @default.
- W2891817692 citedByCount "8" @default.
- W2891817692 countsByYear W28918176922021 @default.
- W2891817692 countsByYear W28918176922022 @default.
- W2891817692 countsByYear W28918176922023 @default.
- W2891817692 crossrefType "book-chapter" @default.
- W2891817692 hasAuthorship W2891817692A5051863471 @default.
- W2891817692 hasAuthorship W2891817692A5054973202 @default.
- W2891817692 hasAuthorship W2891817692A5073924795 @default.
- W2891817692 hasAuthorship W2891817692A5081902636 @default.
- W2891817692 hasBestOaLocation W28918176922 @default.
- W2891817692 hasConcept C119857082 @default.
- W2891817692 hasConcept C121332964 @default.
- W2891817692 hasConcept C144024400 @default.
- W2891817692 hasConcept C146249460 @default.
- W2891817692 hasConcept C149923435 @default.
- W2891817692 hasConcept C153180895 @default.
- W2891817692 hasConcept C154945302 @default.
- W2891817692 hasConcept C163258240 @default.
- W2891817692 hasConcept C2779803651 @default.
- W2891817692 hasConcept C2779916870 @default.
- W2891817692 hasConcept C2780992000 @default.
- W2891817692 hasConcept C2908647359 @default.
- W2891817692 hasConcept C2984842247 @default.
- W2891817692 hasConcept C37736160 @default.
- W2891817692 hasConcept C39890363 @default.
- W2891817692 hasConcept C41008148 @default.
- W2891817692 hasConcept C50644808 @default.
- W2891817692 hasConcept C62520636 @default.
- W2891817692 hasConcept C76155785 @default.
- W2891817692 hasConcept C94915269 @default.
- W2891817692 hasConceptScore W2891817692C119857082 @default.
- W2891817692 hasConceptScore W2891817692C121332964 @default.
- W2891817692 hasConceptScore W2891817692C144024400 @default.
- W2891817692 hasConceptScore W2891817692C146249460 @default.
- W2891817692 hasConceptScore W2891817692C149923435 @default.
- W2891817692 hasConceptScore W2891817692C153180895 @default.
- W2891817692 hasConceptScore W2891817692C154945302 @default.
- W2891817692 hasConceptScore W2891817692C163258240 @default.
- W2891817692 hasConceptScore W2891817692C2779803651 @default.
- W2891817692 hasConceptScore W2891817692C2779916870 @default.
- W2891817692 hasConceptScore W2891817692C2780992000 @default.
- W2891817692 hasConceptScore W2891817692C2908647359 @default.
- W2891817692 hasConceptScore W2891817692C2984842247 @default.
- W2891817692 hasConceptScore W2891817692C37736160 @default.
- W2891817692 hasConceptScore W2891817692C39890363 @default.
- W2891817692 hasConceptScore W2891817692C41008148 @default.
- W2891817692 hasConceptScore W2891817692C50644808 @default.
- W2891817692 hasConceptScore W2891817692C62520636 @default.
- W2891817692 hasConceptScore W2891817692C76155785 @default.
- W2891817692 hasConceptScore W2891817692C94915269 @default.
- W2891817692 hasLocation W28918176921 @default.
- W2891817692 hasLocation W28918176922 @default.
- W2891817692 hasLocation W28918176923 @default.
- W2891817692 hasLocation W28918176924 @default.