Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891826996> ?p ?o ?g. }
- W2891826996 endingPage "292" @default.
- W2891826996 startingPage "284" @default.
- W2891826996 abstract "For decades, task-based functional magnetic resonance imaging (tfMRI) has been a powerful noninvasive tool to explore the organizational architecture of human brain function. Researchers have developed a variety of brain network analysis methods for tfMRI data, including the general linear model (GLM), independent component analysis (ICA) and sparse representation methods. However, these shallow models are limited in faithful reconstruction and modeling of the hierarchical and temporal structures of brain networks, as demonstrated in more and more studies. Recently, recurrent neural networks (RNNs) exhibit great ability of modeling hierarchical and temporal dependency features in the machine learning field, which might be suitable for tfMRI data modeling. To explore such possible advantages of RNNs for tfMRI data, we propose a novel framework of deep recurrent neural network (DRNN) to model the functional brain networks for tfMRI data. Experimental results on the motor task tfMRI data of Human Connectome Project 900 subjects data release demonstrated that the proposed DRNN can not only faithfully reconstruct functional brain networks, but also identify more meaningful brain networks with multiple time scales which are overlooked by traditional shallow models. In general, this work provides an effective and powerful approach to identifying functional brain networks of multiple time scales from tfMRI data." @default.
- W2891826996 created "2018-09-27" @default.
- W2891826996 creator A5008526350 @default.
- W2891826996 creator A5012529382 @default.
- W2891826996 creator A5017535979 @default.
- W2891826996 creator A5023538893 @default.
- W2891826996 creator A5047305953 @default.
- W2891826996 creator A5053447705 @default.
- W2891826996 creator A5060444719 @default.
- W2891826996 creator A5079923482 @default.
- W2891826996 creator A5080583315 @default.
- W2891826996 date "2018-01-01" @default.
- W2891826996 modified "2023-09-22" @default.
- W2891826996 title "Identifying Brain Networks of Multiple Time Scales via Deep Recurrent Neural Network" @default.
- W2891826996 cites W1973990950 @default.
- W2891826996 cites W1999653836 @default.
- W2891826996 cites W2043553533 @default.
- W2891826996 cites W2071608556 @default.
- W2891826996 cites W2072522618 @default.
- W2891826996 cites W2115485420 @default.
- W2891826996 cites W2116649573 @default.
- W2891826996 cites W2117539524 @default.
- W2891826996 cites W2138412635 @default.
- W2891826996 cites W2142875089 @default.
- W2891826996 cites W2592929672 @default.
- W2891826996 cites W2618995589 @default.
- W2891826996 cites W2625749968 @default.
- W2891826996 cites W2791691005 @default.
- W2891826996 cites W2806604345 @default.
- W2891826996 cites W3101378249 @default.
- W2891826996 doi "https://doi.org/10.1007/978-3-030-00931-1_33" @default.
- W2891826996 hasPublicationYear "2018" @default.
- W2891826996 type Work @default.
- W2891826996 sameAs 2891826996 @default.
- W2891826996 citedByCount "7" @default.
- W2891826996 countsByYear W28918269962020 @default.
- W2891826996 countsByYear W28918269962021 @default.
- W2891826996 countsByYear W28918269962022 @default.
- W2891826996 countsByYear W28918269962023 @default.
- W2891826996 crossrefType "book-chapter" @default.
- W2891826996 hasAuthorship W2891826996A5008526350 @default.
- W2891826996 hasAuthorship W2891826996A5012529382 @default.
- W2891826996 hasAuthorship W2891826996A5017535979 @default.
- W2891826996 hasAuthorship W2891826996A5023538893 @default.
- W2891826996 hasAuthorship W2891826996A5047305953 @default.
- W2891826996 hasAuthorship W2891826996A5053447705 @default.
- W2891826996 hasAuthorship W2891826996A5060444719 @default.
- W2891826996 hasAuthorship W2891826996A5079923482 @default.
- W2891826996 hasAuthorship W2891826996A5080583315 @default.
- W2891826996 hasConcept C108583219 @default.
- W2891826996 hasConcept C119857082 @default.
- W2891826996 hasConcept C147168706 @default.
- W2891826996 hasConcept C153180895 @default.
- W2891826996 hasConcept C154945302 @default.
- W2891826996 hasConcept C169760540 @default.
- W2891826996 hasConcept C17744445 @default.
- W2891826996 hasConcept C19768560 @default.
- W2891826996 hasConcept C199539241 @default.
- W2891826996 hasConcept C2776359362 @default.
- W2891826996 hasConcept C2779226451 @default.
- W2891826996 hasConcept C3018011982 @default.
- W2891826996 hasConcept C41008148 @default.
- W2891826996 hasConcept C50644808 @default.
- W2891826996 hasConcept C86803240 @default.
- W2891826996 hasConcept C94625758 @default.
- W2891826996 hasConcept C97820695 @default.
- W2891826996 hasConceptScore W2891826996C108583219 @default.
- W2891826996 hasConceptScore W2891826996C119857082 @default.
- W2891826996 hasConceptScore W2891826996C147168706 @default.
- W2891826996 hasConceptScore W2891826996C153180895 @default.
- W2891826996 hasConceptScore W2891826996C154945302 @default.
- W2891826996 hasConceptScore W2891826996C169760540 @default.
- W2891826996 hasConceptScore W2891826996C17744445 @default.
- W2891826996 hasConceptScore W2891826996C19768560 @default.
- W2891826996 hasConceptScore W2891826996C199539241 @default.
- W2891826996 hasConceptScore W2891826996C2776359362 @default.
- W2891826996 hasConceptScore W2891826996C2779226451 @default.
- W2891826996 hasConceptScore W2891826996C3018011982 @default.
- W2891826996 hasConceptScore W2891826996C41008148 @default.
- W2891826996 hasConceptScore W2891826996C50644808 @default.
- W2891826996 hasConceptScore W2891826996C86803240 @default.
- W2891826996 hasConceptScore W2891826996C94625758 @default.
- W2891826996 hasConceptScore W2891826996C97820695 @default.
- W2891826996 hasLocation W28918269961 @default.
- W2891826996 hasOpenAccess W2891826996 @default.
- W2891826996 hasPrimaryLocation W28918269961 @default.
- W2891826996 hasRelatedWork W3014300295 @default.
- W2891826996 hasRelatedWork W3095983064 @default.
- W2891826996 hasRelatedWork W4223943233 @default.
- W2891826996 hasRelatedWork W4225161397 @default.
- W2891826996 hasRelatedWork W4309045103 @default.
- W2891826996 hasRelatedWork W4312200629 @default.
- W2891826996 hasRelatedWork W4360585206 @default.
- W2891826996 hasRelatedWork W4364306694 @default.
- W2891826996 hasRelatedWork W4380075502 @default.
- W2891826996 hasRelatedWork W4380086463 @default.
- W2891826996 isParatext "false" @default.
- W2891826996 isRetracted "false" @default.