Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891831960> ?p ?o ?g. }
- W2891831960 endingPage "4954" @default.
- W2891831960 startingPage "4942" @default.
- W2891831960 abstract "Purpose Denoising has been a challenging research subject in medical imaging, since the suppression of noise conflicts with the preservation of texture and edges. To address this challenge, we develop a content‐oriented sparse representation ( COSR ) method for denoising in computed tomography ( CT ). Methods An image is segmented into a number of content areas and each of them consists of similar material. Having been ex‐painted, each content area is sparsely coded using the dictionary learnt from patches extracted from the corresponding content area. By constraining sparsity, noise is suppressed and the final image is formed by aggregating all denoised content areas. The performance of COSR method is examined with images simulated by computer and generated by multidetector row CT ( MDCT ), cone beam CT ( CBCT ), and micro‐ CT , in which water phantom, anthropomorphic phantom, a human subject, and a small animal are engaged, using the figures of merit, such as standard division ( SD ), contrast to noise ratio ( CNR ), and thresholded edge keeping index ( EKI th ) and structural similarity index ( SSIM ). In addition, the optimization of performance by parameter tuning is also investigated. Results Quantitatively gauged by metrics of noise, EKI th and SSIM , the performance evaluation shows that the proposed COSR method is effective in denoising (>50% reduction in noise) while it outperforms the conventional sparse representation method in preservation of texture and edge by ~20% (gauged by SSIM ). It has also been shown that the COSR method is tolerable to inaccuracy in content area segmentation and variation in dictionary learning. Moreover, the computational efficiency of COSR can be substantially improved using prelearnt dictionaries. Conclusions The COSR method would find its utility in clinical and preclinical applications, such as low‐dose CT , image segmentation, registration, and computer‐aided diagnosis. The proposal of COSR denoising is of innovation and significance in the theory and practice of denoising in medical imaging. A demonstration code package is available at https://github.com/xiehq/COSR ." @default.
- W2891831960 created "2018-09-27" @default.
- W2891831960 creator A5001823365 @default.
- W2891831960 creator A5009731683 @default.
- W2891831960 creator A5040108355 @default.
- W2891831960 creator A5070245489 @default.
- W2891831960 creator A5077595417 @default.
- W2891831960 creator A5082583021 @default.
- W2891831960 date "2018-10-10" @default.
- W2891831960 modified "2023-10-14" @default.
- W2891831960 title "Content‐oriented sparse representation ( COSR ) for CT denoising with preservation of texture and edge" @default.
- W2891831960 cites W1556473642 @default.
- W2891831960 cites W1964231221 @default.
- W2891831960 cites W2002611249 @default.
- W2891831960 cites W2005876975 @default.
- W2891831960 cites W2014617656 @default.
- W2891831960 cites W2029630915 @default.
- W2891831960 cites W2030111171 @default.
- W2891831960 cites W2041625018 @default.
- W2891831960 cites W2042743306 @default.
- W2891831960 cites W2052829179 @default.
- W2891831960 cites W2059311958 @default.
- W2891831960 cites W2068941797 @default.
- W2891831960 cites W2077964948 @default.
- W2891831960 cites W2079227723 @default.
- W2891831960 cites W2083609718 @default.
- W2891831960 cites W2091484864 @default.
- W2891831960 cites W2094366314 @default.
- W2891831960 cites W2101192922 @default.
- W2891831960 cites W2109504624 @default.
- W2891831960 cites W2120323556 @default.
- W2891831960 cites W2125527601 @default.
- W2891831960 cites W2129131372 @default.
- W2891831960 cites W2131064896 @default.
- W2891831960 cites W2133059825 @default.
- W2891831960 cites W2133665775 @default.
- W2891831960 cites W2142060261 @default.
- W2891831960 cites W2145096794 @default.
- W2891831960 cites W2153663612 @default.
- W2891831960 cites W2153703004 @default.
- W2891831960 cites W2163612361 @default.
- W2891831960 cites W2165587327 @default.
- W2891831960 cites W2192485490 @default.
- W2891831960 cites W2527085609 @default.
- W2891831960 cites W2528585249 @default.
- W2891831960 cites W2762996341 @default.
- W2891831960 cites W4206310440 @default.
- W2891831960 cites W4250955649 @default.
- W2891831960 doi "https://doi.org/10.1002/mp.13189" @default.
- W2891831960 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30220114" @default.
- W2891831960 hasPublicationYear "2018" @default.
- W2891831960 type Work @default.
- W2891831960 sameAs 2891831960 @default.
- W2891831960 citedByCount "5" @default.
- W2891831960 countsByYear W28918319602019 @default.
- W2891831960 countsByYear W28918319602021 @default.
- W2891831960 crossrefType "journal-article" @default.
- W2891831960 hasAuthorship W2891831960A5001823365 @default.
- W2891831960 hasAuthorship W2891831960A5009731683 @default.
- W2891831960 hasAuthorship W2891831960A5040108355 @default.
- W2891831960 hasAuthorship W2891831960A5070245489 @default.
- W2891831960 hasAuthorship W2891831960A5077595417 @default.
- W2891831960 hasAuthorship W2891831960A5082583021 @default.
- W2891831960 hasConcept C103278499 @default.
- W2891831960 hasConcept C104293457 @default.
- W2891831960 hasConcept C115961682 @default.
- W2891831960 hasConcept C124066611 @default.
- W2891831960 hasConcept C13944312 @default.
- W2891831960 hasConcept C153180895 @default.
- W2891831960 hasConcept C154945302 @default.
- W2891831960 hasConcept C163294075 @default.
- W2891831960 hasConcept C2989005 @default.
- W2891831960 hasConcept C31972630 @default.
- W2891831960 hasConcept C33923547 @default.
- W2891831960 hasConcept C41008148 @default.
- W2891831960 hasConcept C55020928 @default.
- W2891831960 hasConcept C71924100 @default.
- W2891831960 hasConcept C76155785 @default.
- W2891831960 hasConcept C89600930 @default.
- W2891831960 hasConcept C99498987 @default.
- W2891831960 hasConceptScore W2891831960C103278499 @default.
- W2891831960 hasConceptScore W2891831960C104293457 @default.
- W2891831960 hasConceptScore W2891831960C115961682 @default.
- W2891831960 hasConceptScore W2891831960C124066611 @default.
- W2891831960 hasConceptScore W2891831960C13944312 @default.
- W2891831960 hasConceptScore W2891831960C153180895 @default.
- W2891831960 hasConceptScore W2891831960C154945302 @default.
- W2891831960 hasConceptScore W2891831960C163294075 @default.
- W2891831960 hasConceptScore W2891831960C2989005 @default.
- W2891831960 hasConceptScore W2891831960C31972630 @default.
- W2891831960 hasConceptScore W2891831960C33923547 @default.
- W2891831960 hasConceptScore W2891831960C41008148 @default.
- W2891831960 hasConceptScore W2891831960C55020928 @default.
- W2891831960 hasConceptScore W2891831960C71924100 @default.
- W2891831960 hasConceptScore W2891831960C76155785 @default.
- W2891831960 hasConceptScore W2891831960C89600930 @default.
- W2891831960 hasConceptScore W2891831960C99498987 @default.
- W2891831960 hasFunder F4320306230 @default.