Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891832481> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2891832481 abstract "This paper proposes a new framework for estimating instrumental variable (IV) quantile models. The first part of our proposal can be cast as a mixed integer linear program (MILP), which allows us to capitalize on recent progress in mixed integer optimization. The computational advantage of the proposed method makes it an attractive alternative to existing estimators in the presence of multiple endogenous regressors. This is a situation that arises naturally when one endogenous variable is interacted with several other variables in a regression equation. In our simulations, the proposed method using MILP with a random starting point can reliably estimate regressions for a sample size of 500 with 20 endogenous variables in 5 seconds. Theoretical results for early termination of MILP are also provided. The second part of our proposal is a k-step correction frameowork, which is proved to be able to convert any point within a small but fixed neighborhood of the true parameter value into an estimate that is asymptotically equivalent to GMM. Our result does not require the initial estimate to be consistent and only 2 log(n) iterations are needed. Since the k-step correction does not require any optimization, applying the k-step correction to MILP estimate provides a computationally attractive way of obtaining efficient estimators. When dealing with very large data sets, we can run the MILP algorithm on only a small subsample and our theoretical results guarantee that the resulting estimator from the k-step correction is equivalent to computing GMM on the full sample. As a result, we can handle massive datasets of millions of observations within seconds. In Monte Carlo simulations, we observe decent performance of confidence intervals even if MILP uses only 0.01% of samples of size 5 million. As an empirical illustration, we examine the heterogeneous treatment effect of Job Training Partnership Act (JTPA) using a regression with 13 interaction terms of the treatment variable." @default.
- W2891832481 created "2018-09-27" @default.
- W2891832481 creator A5023444661 @default.
- W2891832481 date "2018-01-01" @default.
- W2891832481 modified "2023-09-26" @default.
- W2891832481 title "k-Step Correction for Mixed Integer Linear Programming: A New Approach for Instrumental Variable Quantile Regressions and Related Problems" @default.
- W2891832481 doi "https://doi.org/10.2139/ssrn.3252716" @default.
- W2891832481 hasPublicationYear "2018" @default.
- W2891832481 type Work @default.
- W2891832481 sameAs 2891832481 @default.
- W2891832481 citedByCount "2" @default.
- W2891832481 countsByYear W28918324812018 @default.
- W2891832481 countsByYear W28918324812021 @default.
- W2891832481 crossrefType "journal-article" @default.
- W2891832481 hasAuthorship W2891832481A5023444661 @default.
- W2891832481 hasConcept C105795698 @default.
- W2891832481 hasConcept C118671147 @default.
- W2891832481 hasConcept C126255220 @default.
- W2891832481 hasConcept C129848803 @default.
- W2891832481 hasConcept C134306372 @default.
- W2891832481 hasConcept C162144332 @default.
- W2891832481 hasConcept C182365436 @default.
- W2891832481 hasConcept C185429906 @default.
- W2891832481 hasConcept C185592680 @default.
- W2891832481 hasConcept C198531522 @default.
- W2891832481 hasConcept C199360897 @default.
- W2891832481 hasConcept C33923547 @default.
- W2891832481 hasConcept C41008148 @default.
- W2891832481 hasConcept C41045048 @default.
- W2891832481 hasConcept C43617362 @default.
- W2891832481 hasConcept C48921125 @default.
- W2891832481 hasConcept C56086750 @default.
- W2891832481 hasConcept C63817138 @default.
- W2891832481 hasConcept C97137487 @default.
- W2891832481 hasConceptScore W2891832481C105795698 @default.
- W2891832481 hasConceptScore W2891832481C118671147 @default.
- W2891832481 hasConceptScore W2891832481C126255220 @default.
- W2891832481 hasConceptScore W2891832481C129848803 @default.
- W2891832481 hasConceptScore W2891832481C134306372 @default.
- W2891832481 hasConceptScore W2891832481C162144332 @default.
- W2891832481 hasConceptScore W2891832481C182365436 @default.
- W2891832481 hasConceptScore W2891832481C185429906 @default.
- W2891832481 hasConceptScore W2891832481C185592680 @default.
- W2891832481 hasConceptScore W2891832481C198531522 @default.
- W2891832481 hasConceptScore W2891832481C199360897 @default.
- W2891832481 hasConceptScore W2891832481C33923547 @default.
- W2891832481 hasConceptScore W2891832481C41008148 @default.
- W2891832481 hasConceptScore W2891832481C41045048 @default.
- W2891832481 hasConceptScore W2891832481C43617362 @default.
- W2891832481 hasConceptScore W2891832481C48921125 @default.
- W2891832481 hasConceptScore W2891832481C56086750 @default.
- W2891832481 hasConceptScore W2891832481C63817138 @default.
- W2891832481 hasConceptScore W2891832481C97137487 @default.
- W2891832481 hasLocation W28918324811 @default.
- W2891832481 hasOpenAccess W2891832481 @default.
- W2891832481 hasPrimaryLocation W28918324811 @default.
- W2891832481 hasRelatedWork W1899621042 @default.
- W2891832481 hasRelatedWork W2095195456 @default.
- W2891832481 hasRelatedWork W2138805387 @default.
- W2891832481 hasRelatedWork W2191119664 @default.
- W2891832481 hasRelatedWork W2338579333 @default.
- W2891832481 hasRelatedWork W2416563375 @default.
- W2891832481 hasRelatedWork W2766772567 @default.
- W2891832481 hasRelatedWork W2800599915 @default.
- W2891832481 hasRelatedWork W2803670347 @default.
- W2891832481 hasRelatedWork W2804329086 @default.
- W2891832481 hasRelatedWork W2910865382 @default.
- W2891832481 hasRelatedWork W2911967515 @default.
- W2891832481 hasRelatedWork W3039287978 @default.
- W2891832481 hasRelatedWork W3047457833 @default.
- W2891832481 hasRelatedWork W3086394069 @default.
- W2891832481 hasRelatedWork W3105797876 @default.
- W2891832481 hasRelatedWork W3123835220 @default.
- W2891832481 hasRelatedWork W3150353360 @default.
- W2891832481 hasRelatedWork W3207181895 @default.
- W2891832481 hasRelatedWork W3122259479 @default.
- W2891832481 isParatext "false" @default.
- W2891832481 isRetracted "false" @default.
- W2891832481 magId "2891832481" @default.
- W2891832481 workType "article" @default.