Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891834831> ?p ?o ?g. }
- W2891834831 endingPage "1440" @default.
- W2891834831 startingPage "1440" @default.
- W2891834831 abstract "To classify Very-High-Resolution (VHR) imagery, Geographic Object Based Image Analysis (GEOBIA) is the most popular method used to produce high quality Land-Use/Land-Cover maps. A crucial step in GEOBIA is the appropriate parametrization of the segmentation algorithm prior to the classification. However, little effort has been made to automatically optimize GEOBIA algorithms in an unsupervised and spatially meaningful manner. So far, most Unsupervised Segmentation Parameter Optimization (USPO) techniques, assume spatial stationarity for the whole study area extent. This can be questionable, particularly for applications in geographically large and heterogeneous urban areas. In this study, we employed a novel framework named Spatially Partitioned Unsupervised Segmentation Parameter Optimization (SPUSPO), which optimizes segmentation parameters locally rather than globally, for the Sub-Saharan African city of Ouagadougou, Burkina Faso, using WorldView-3 imagery (607 km2). The results showed that there exists significant spatial variation in the optimal segmentation parameters suggested by USPO across the whole scene, which follows landscape patterns—mainly of the various built-up and vegetation types. The most appropriate automatic spatial partitioning method from the investigated techniques, was an edge-detection cutline algorithm, which achieved higher classification accuracy than a global optimization, better predicted built-up regions, and did not suffer from edge effects. The overall classification accuracy using SPUSPO was 90.5%, whilst the accuracy from undertaking a traditional USPO approach was 89.5%. The differences between them were statistically significant (p < 0.05) based on a McNemar’s test of similarity. Our methods were validated further by employing a segmentation goodness metric, Area Fit Index (AFI)on building objects across Ouagadougou, which suggested that a global USPO was more over-segmented than our local approach. The mean AFI values for SPUSPO and USPO were 0.28 and 0.36, respectively. Finally, the processing was carried out using the open-source software GRASS GIS, due to its efficiency in raster-based applications." @default.
- W2891834831 created "2018-09-27" @default.
- W2891834831 creator A5008636170 @default.
- W2891834831 creator A5009590473 @default.
- W2891834831 creator A5012690957 @default.
- W2891834831 creator A5053444530 @default.
- W2891834831 creator A5075388927 @default.
- W2891834831 creator A5084913762 @default.
- W2891834831 date "2018-09-09" @default.
- W2891834831 modified "2023-09-27" @default.
- W2891834831 title "Scale Matters: Spatially Partitioned Unsupervised Segmentation Parameter Optimization for Large and Heterogeneous Satellite Images" @default.
- W2891834831 cites W1964262728 @default.
- W2891834831 cites W1967769689 @default.
- W2891834831 cites W1968214551 @default.
- W2891834831 cites W1969975218 @default.
- W2891834831 cites W1971240982 @default.
- W2891834831 cites W1973749534 @default.
- W2891834831 cites W1984792953 @default.
- W2891834831 cites W1995280601 @default.
- W2891834831 cites W2002021232 @default.
- W2891834831 cites W2008043556 @default.
- W2891834831 cites W2010549013 @default.
- W2891834831 cites W2012164368 @default.
- W2891834831 cites W2039596145 @default.
- W2891834831 cites W2052458288 @default.
- W2891834831 cites W2058132610 @default.
- W2891834831 cites W2068509151 @default.
- W2891834831 cites W2071936897 @default.
- W2891834831 cites W2072289174 @default.
- W2891834831 cites W2082081125 @default.
- W2891834831 cites W2082580279 @default.
- W2891834831 cites W2089087727 @default.
- W2891834831 cites W2089716607 @default.
- W2891834831 cites W2095028777 @default.
- W2891834831 cites W2103079830 @default.
- W2891834831 cites W2105058098 @default.
- W2891834831 cites W2122982975 @default.
- W2891834831 cites W2141166512 @default.
- W2891834831 cites W2142710676 @default.
- W2891834831 cites W2143682935 @default.
- W2891834831 cites W2259714867 @default.
- W2891834831 cites W2261059368 @default.
- W2891834831 cites W2325171775 @default.
- W2891834831 cites W2345272913 @default.
- W2891834831 cites W2471522397 @default.
- W2891834831 cites W2496117949 @default.
- W2891834831 cites W2521868507 @default.
- W2891834831 cites W2557117995 @default.
- W2891834831 cites W2586297576 @default.
- W2891834831 cites W2586954532 @default.
- W2891834831 cites W2603601739 @default.
- W2891834831 cites W2606006540 @default.
- W2891834831 cites W2606562884 @default.
- W2891834831 cites W2648242067 @default.
- W2891834831 cites W2725897987 @default.
- W2891834831 cites W2739136309 @default.
- W2891834831 cites W2756201869 @default.
- W2891834831 cites W2770654566 @default.
- W2891834831 cites W2771766796 @default.
- W2891834831 cites W2782934949 @default.
- W2891834831 cites W2784208206 @default.
- W2891834831 cites W2788713138 @default.
- W2891834831 cites W2792900864 @default.
- W2891834831 cites W2793091350 @default.
- W2891834831 cites W2794055043 @default.
- W2891834831 cites W2797908548 @default.
- W2891834831 cites W2808779211 @default.
- W2891834831 cites W2963659230 @default.
- W2891834831 cites W3102476541 @default.
- W2891834831 cites W318364127 @default.
- W2891834831 cites W2489920132 @default.
- W2891834831 cites W2763677584 @default.
- W2891834831 doi "https://doi.org/10.3390/rs10091440" @default.
- W2891834831 hasPublicationYear "2018" @default.
- W2891834831 type Work @default.
- W2891834831 sameAs 2891834831 @default.
- W2891834831 citedByCount "34" @default.
- W2891834831 countsByYear W28918348312018 @default.
- W2891834831 countsByYear W28918348312019 @default.
- W2891834831 countsByYear W28918348312020 @default.
- W2891834831 countsByYear W28918348312021 @default.
- W2891834831 countsByYear W28918348312022 @default.
- W2891834831 countsByYear W28918348312023 @default.
- W2891834831 crossrefType "journal-article" @default.
- W2891834831 hasAuthorship W2891834831A5008636170 @default.
- W2891834831 hasAuthorship W2891834831A5009590473 @default.
- W2891834831 hasAuthorship W2891834831A5012690957 @default.
- W2891834831 hasAuthorship W2891834831A5053444530 @default.
- W2891834831 hasAuthorship W2891834831A5075388927 @default.
- W2891834831 hasAuthorship W2891834831A5084913762 @default.
- W2891834831 hasBestOaLocation W28918348311 @default.
- W2891834831 hasConcept C124504099 @default.
- W2891834831 hasConcept C127413603 @default.
- W2891834831 hasConcept C147176958 @default.
- W2891834831 hasConcept C153180895 @default.
- W2891834831 hasConcept C154945302 @default.
- W2891834831 hasConcept C205649164 @default.
- W2891834831 hasConcept C25694479 @default.