Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891836487> ?p ?o ?g. }
- W2891836487 abstract "In this paper we advocate the use of bilingual corpora which are abundantly available for training sentence compression models. Our approach borrows much of its machinery from neural machine translation and leverages bilingual pivoting: compressions are obtained by translating a source string into a foreign language and then back-translating it into the source while controlling the translation length. Our model can be trained for any language as long as a bilingual corpus is available and performs arbitrary rewrites without access to compression specific data. We release. Moss, a new parallel Multilingual Compression dataset for English, German, and French which can be used to evaluate compression models across languages and genres." @default.
- W2891836487 created "2018-09-27" @default.
- W2891836487 creator A5005771535 @default.
- W2891836487 creator A5041024491 @default.
- W2891836487 creator A5062587302 @default.
- W2891836487 date "2018-01-01" @default.
- W2891836487 modified "2023-09-25" @default.
- W2891836487 title "Sentence Compression for Arbitrary Languages via Multilingual Pivoting" @default.
- W2891836487 cites W1552023264 @default.
- W2891836487 cites W1664028424 @default.
- W2891836487 cites W1964326564 @default.
- W2891836487 cites W1986450680 @default.
- W2891836487 cites W2005603124 @default.
- W2891836487 cites W2051840895 @default.
- W2891836487 cites W2064675550 @default.
- W2891836487 cites W2103164118 @default.
- W2891836487 cites W2104944827 @default.
- W2891836487 cites W2110485445 @default.
- W2891836487 cites W2111032165 @default.
- W2891836487 cites W2111666304 @default.
- W2891836487 cites W2112077341 @default.
- W2891836487 cites W2115322217 @default.
- W2891836487 cites W2118681326 @default.
- W2891836487 cites W2119727789 @default.
- W2891836487 cites W2122311631 @default.
- W2891836487 cites W2124807415 @default.
- W2891836487 cites W2128774237 @default.
- W2891836487 cites W2130942839 @default.
- W2891836487 cites W2133182690 @default.
- W2891836487 cites W2145882814 @default.
- W2891836487 cites W2149327368 @default.
- W2891836487 cites W2154652894 @default.
- W2891836487 cites W2157331557 @default.
- W2891836487 cites W2163117351 @default.
- W2891836487 cites W2165836836 @default.
- W2891836487 cites W2184135559 @default.
- W2891836487 cites W22168010 @default.
- W2891836487 cites W2250861254 @default.
- W2891836487 cites W2251109644 @default.
- W2891836487 cites W2251654079 @default.
- W2891836487 cites W2251656952 @default.
- W2891836487 cites W2467173223 @default.
- W2891836487 cites W2511538013 @default.
- W2891836487 cites W2526303618 @default.
- W2891836487 cites W2594229957 @default.
- W2891836487 cites W2605243085 @default.
- W2891836487 cites W2740121762 @default.
- W2891836487 cites W2741049976 @default.
- W2891836487 cites W2962784628 @default.
- W2891836487 cites W2962965405 @default.
- W2891836487 cites W2963104691 @default.
- W2891836487 cites W2963216553 @default.
- W2891836487 cites W2963248296 @default.
- W2891836487 cites W2964007535 @default.
- W2891836487 cites W2964121744 @default.
- W2891836487 cites W2964308564 @default.
- W2891836487 cites W338621447 @default.
- W2891836487 cites W98347854 @default.
- W2891836487 cites W169063832 @default.
- W2891836487 doi "https://doi.org/10.18653/v1/d18-1267" @default.
- W2891836487 hasPublicationYear "2018" @default.
- W2891836487 type Work @default.
- W2891836487 sameAs 2891836487 @default.
- W2891836487 citedByCount "8" @default.
- W2891836487 countsByYear W28918364872019 @default.
- W2891836487 countsByYear W28918364872020 @default.
- W2891836487 countsByYear W28918364872023 @default.
- W2891836487 crossrefType "proceedings-article" @default.
- W2891836487 hasAuthorship W2891836487A5005771535 @default.
- W2891836487 hasAuthorship W2891836487A5041024491 @default.
- W2891836487 hasAuthorship W2891836487A5062587302 @default.
- W2891836487 hasBestOaLocation W28918364871 @default.
- W2891836487 hasConcept C104317684 @default.
- W2891836487 hasConcept C105580179 @default.
- W2891836487 hasConcept C121332964 @default.
- W2891836487 hasConcept C137293760 @default.
- W2891836487 hasConcept C138885662 @default.
- W2891836487 hasConcept C149364088 @default.
- W2891836487 hasConcept C154775046 @default.
- W2891836487 hasConcept C154945302 @default.
- W2891836487 hasConcept C157486923 @default.
- W2891836487 hasConcept C159985019 @default.
- W2891836487 hasConcept C180016635 @default.
- W2891836487 hasConcept C185592680 @default.
- W2891836487 hasConcept C192562407 @default.
- W2891836487 hasConcept C203005215 @default.
- W2891836487 hasConcept C204321447 @default.
- W2891836487 hasConcept C2777530160 @default.
- W2891836487 hasConcept C28490314 @default.
- W2891836487 hasConcept C2985367798 @default.
- W2891836487 hasConcept C41008148 @default.
- W2891836487 hasConcept C41895202 @default.
- W2891836487 hasConcept C55493867 @default.
- W2891836487 hasConcept C62520636 @default.
- W2891836487 hasConcept C78548338 @default.
- W2891836487 hasConceptScore W2891836487C104317684 @default.
- W2891836487 hasConceptScore W2891836487C105580179 @default.
- W2891836487 hasConceptScore W2891836487C121332964 @default.
- W2891836487 hasConceptScore W2891836487C137293760 @default.
- W2891836487 hasConceptScore W2891836487C138885662 @default.