Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891837342> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2891837342 endingPage "2449" @default.
- W2891837342 startingPage "2439" @default.
- W2891837342 abstract "The most important part of signal processing for classification is feature extraction as a mapping from original input electroencephalographic (EEG) data space to new features space with the biggest class separability value. Features are not only the most important, but also the most difficult task from the classification process as they define input data and classification quality. An ideal set of features would make the classification problem trivial. This article presents novel methods of feature extraction processing and automatic epilepsy seizure classification combining machine learning methods with genetic evolution algorithms.Classification is performed on EEG data that represent electric brain activity. At first, the signal is preprocessed with digital filtration and adaptive segmentation using fractal dimensions as the only segmentation measure. In the next step, a novel method using genetic programming (GP) combined with support vector machine (SVM) confusion matrix as fitness function weight is used to extract feature vectors compressed into lower dimension space and classify the final result into ictal or interictal epochs.The final application of GP-SVM method improves the discriminatory performance of a classifier by reducing feature dimensionality at the same time. Members of the GP tree structure represent the features themselves and their number is automatically decided by the compression function introduced in this paper. This novel method improves the overall performance of the SVM classification by dramatically reducing the size of input feature vector.According to results, the accuracy of this algorithm is very high and comparable, or even superior to other automatic detection algorithms. In combination with the great efficiency, this algorithm can be used in real-time epilepsy detection applications. From the results of the algorithm's classification, we can observe high sensitivity, specificity results, except for the Generalized Tonic Clonic Seizure (GTCS). As the next step, the optimization of the compression stage and final SVM evaluation stage is in place. More data need to be obtained on GTCS to improve the overall classification score for GTCS." @default.
- W2891837342 created "2018-09-27" @default.
- W2891837342 creator A5032613166 @default.
- W2891837342 creator A5040507263 @default.
- W2891837342 creator A5045569977 @default.
- W2891837342 creator A5066903927 @default.
- W2891837342 date "2018-09-01" @default.
- W2891837342 modified "2023-09-26" @default.
- W2891837342 title "Automatic epilepsy detection using fractal dimensions segmentation and GP–SVM classification" @default.
- W2891837342 cites W1970039259 @default.
- W2891837342 cites W1975082906 @default.
- W2891837342 cites W2055442583 @default.
- W2891837342 cites W2075647286 @default.
- W2891837342 cites W2138215136 @default.
- W2891837342 cites W4252790683 @default.
- W2891837342 doi "https://doi.org/10.2147/ndt.s167841" @default.
- W2891837342 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6157576" @default.
- W2891837342 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30275697" @default.
- W2891837342 hasPublicationYear "2018" @default.
- W2891837342 type Work @default.
- W2891837342 sameAs 2891837342 @default.
- W2891837342 citedByCount "10" @default.
- W2891837342 countsByYear W28918373422019 @default.
- W2891837342 countsByYear W28918373422020 @default.
- W2891837342 countsByYear W28918373422021 @default.
- W2891837342 countsByYear W28918373422022 @default.
- W2891837342 crossrefType "journal-article" @default.
- W2891837342 hasAuthorship W2891837342A5032613166 @default.
- W2891837342 hasAuthorship W2891837342A5040507263 @default.
- W2891837342 hasAuthorship W2891837342A5045569977 @default.
- W2891837342 hasAuthorship W2891837342A5066903927 @default.
- W2891837342 hasBestOaLocation W28918373421 @default.
- W2891837342 hasConcept C12267149 @default.
- W2891837342 hasConcept C138602881 @default.
- W2891837342 hasConcept C153180895 @default.
- W2891837342 hasConcept C154945302 @default.
- W2891837342 hasConcept C41008148 @default.
- W2891837342 hasConcept C52622490 @default.
- W2891837342 hasConcept C83665646 @default.
- W2891837342 hasConcept C89600930 @default.
- W2891837342 hasConceptScore W2891837342C12267149 @default.
- W2891837342 hasConceptScore W2891837342C138602881 @default.
- W2891837342 hasConceptScore W2891837342C153180895 @default.
- W2891837342 hasConceptScore W2891837342C154945302 @default.
- W2891837342 hasConceptScore W2891837342C41008148 @default.
- W2891837342 hasConceptScore W2891837342C52622490 @default.
- W2891837342 hasConceptScore W2891837342C83665646 @default.
- W2891837342 hasConceptScore W2891837342C89600930 @default.
- W2891837342 hasLocation W28918373421 @default.
- W2891837342 hasLocation W28918373422 @default.
- W2891837342 hasLocation W28918373423 @default.
- W2891837342 hasLocation W28918373424 @default.
- W2891837342 hasLocation W28918373425 @default.
- W2891837342 hasOpenAccess W2891837342 @default.
- W2891837342 hasPrimaryLocation W28918373421 @default.
- W2891837342 hasRelatedWork W2124109643 @default.
- W2891837342 hasRelatedWork W2126100045 @default.
- W2891837342 hasRelatedWork W2153189372 @default.
- W2891837342 hasRelatedWork W2336974148 @default.
- W2891837342 hasRelatedWork W2381773606 @default.
- W2891837342 hasRelatedWork W2734744645 @default.
- W2891837342 hasRelatedWork W2754350655 @default.
- W2891837342 hasRelatedWork W4225360039 @default.
- W2891837342 hasRelatedWork W2187500075 @default.
- W2891837342 hasRelatedWork W2345184372 @default.
- W2891837342 hasVolume "Volume 14" @default.
- W2891837342 isParatext "false" @default.
- W2891837342 isRetracted "false" @default.
- W2891837342 magId "2891837342" @default.
- W2891837342 workType "article" @default.