Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891837572> ?p ?o ?g. }
- W2891837572 abstract "Individualized therapies ask for the most effective regimen for each patient, while the patients’ response may differ from each other. However, it is impossible to clinically evaluate each patient’s response due to the large population. Human cell lines have harbored most of the same genetic changes found in patients’ tumors, thus are widely used to help understand initial responses of drugs. Based on the more credible assumption that similar cell lines and similar drugs exhibit similar responses, we formulated drug response prediction as a recommender system problem, and then adopted a hybrid interpolation weighted collaborative filtering (HIWCF) method to predict anti-cancer drug responses of cell lines by incorporating cell line similarity and drug similarity shown from gene expression profiles, drug chemical structure as well as drug response similarity. Specifically, we estimated the baseline based on the available responses and shrunk the similarity score for each cell line pair as well as each drug pair. The similarity scores were then shrunk and weighted by the correlation coefficients drawn from the know response between each pair. Before used to find the K most similar neighbors for further prediction, they went through the case amplification strategy to emphasize high similarity and neglect low similarity. In the last step for prediction, cell line-oriented and drug-oriented collaborative filtering models were carried out, and the average of predicted values from both models was used as the final predicted sensitivity. Through 10-fold cross validation, this approach was shown to reach accurate and reproducible outcome for those missing drug sensitivities. We also found that the drug response similarity between cell lines or drugs may play important role in the prediction. Finally, we discussed the biological outcomes based on the newly predicted response values in GDSC dataset." @default.
- W2891837572 created "2018-09-27" @default.
- W2891837572 creator A5018073436 @default.
- W2891837572 creator A5033532580 @default.
- W2891837572 creator A5047767249 @default.
- W2891837572 creator A5053787520 @default.
- W2891837572 creator A5070724586 @default.
- W2891837572 date "2018-09-12" @default.
- W2891837572 modified "2023-10-16" @default.
- W2891837572 title "A Hybrid Interpolation Weighted Collaborative Filtering Method for Anti-cancer Drug Response Prediction" @default.
- W2891837572 cites W168907754 @default.
- W2891837572 cites W1971106435 @default.
- W2891837572 cites W2004638738 @default.
- W2891837572 cites W2043398720 @default.
- W2891837572 cites W2047109571 @default.
- W2891837572 cites W2059189549 @default.
- W2891837572 cites W2080686146 @default.
- W2891837572 cites W2087312216 @default.
- W2891837572 cites W2104709519 @default.
- W2891837572 cites W2108068107 @default.
- W2891837572 cites W2108933868 @default.
- W2891837572 cites W2118909720 @default.
- W2891837572 cites W2120204563 @default.
- W2891837572 cites W2122128696 @default.
- W2891837572 cites W2125789330 @default.
- W2891837572 cites W2129860849 @default.
- W2891837572 cites W2140593657 @default.
- W2891837572 cites W2144081697 @default.
- W2891837572 cites W2162946128 @default.
- W2891837572 cites W2167395325 @default.
- W2891837572 cites W2171960770 @default.
- W2891837572 cites W2197241765 @default.
- W2891837572 cites W2509229138 @default.
- W2891837572 cites W2513486311 @default.
- W2891837572 cites W2569335714 @default.
- W2891837572 cites W2736980967 @default.
- W2891837572 cites W2742007096 @default.
- W2891837572 cites W2745791324 @default.
- W2891837572 cites W2750448514 @default.
- W2891837572 cites W2805406480 @default.
- W2891837572 cites W3146690518 @default.
- W2891837572 doi "https://doi.org/10.3389/fphar.2018.01017" @default.
- W2891837572 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6143790" @default.
- W2891837572 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30258362" @default.
- W2891837572 hasPublicationYear "2018" @default.
- W2891837572 type Work @default.
- W2891837572 sameAs 2891837572 @default.
- W2891837572 citedByCount "35" @default.
- W2891837572 countsByYear W28918375722019 @default.
- W2891837572 countsByYear W28918375722020 @default.
- W2891837572 countsByYear W28918375722021 @default.
- W2891837572 countsByYear W28918375722022 @default.
- W2891837572 countsByYear W28918375722023 @default.
- W2891837572 crossrefType "journal-article" @default.
- W2891837572 hasAuthorship W2891837572A5018073436 @default.
- W2891837572 hasAuthorship W2891837572A5033532580 @default.
- W2891837572 hasAuthorship W2891837572A5047767249 @default.
- W2891837572 hasAuthorship W2891837572A5053787520 @default.
- W2891837572 hasAuthorship W2891837572A5070724586 @default.
- W2891837572 hasBestOaLocation W28918375721 @default.
- W2891837572 hasConcept C103278499 @default.
- W2891837572 hasConcept C104114177 @default.
- W2891837572 hasConcept C115961682 @default.
- W2891837572 hasConcept C119857082 @default.
- W2891837572 hasConcept C126322002 @default.
- W2891837572 hasConcept C137800194 @default.
- W2891837572 hasConcept C154945302 @default.
- W2891837572 hasConcept C21569690 @default.
- W2891837572 hasConcept C2780035454 @default.
- W2891837572 hasConcept C2781413609 @default.
- W2891837572 hasConcept C2908647359 @default.
- W2891837572 hasConcept C2994119904 @default.
- W2891837572 hasConcept C33923547 @default.
- W2891837572 hasConcept C41008148 @default.
- W2891837572 hasConcept C557471498 @default.
- W2891837572 hasConcept C60644358 @default.
- W2891837572 hasConcept C70721500 @default.
- W2891837572 hasConcept C71924100 @default.
- W2891837572 hasConcept C86803240 @default.
- W2891837572 hasConcept C98274493 @default.
- W2891837572 hasConcept C99454951 @default.
- W2891837572 hasConceptScore W2891837572C103278499 @default.
- W2891837572 hasConceptScore W2891837572C104114177 @default.
- W2891837572 hasConceptScore W2891837572C115961682 @default.
- W2891837572 hasConceptScore W2891837572C119857082 @default.
- W2891837572 hasConceptScore W2891837572C126322002 @default.
- W2891837572 hasConceptScore W2891837572C137800194 @default.
- W2891837572 hasConceptScore W2891837572C154945302 @default.
- W2891837572 hasConceptScore W2891837572C21569690 @default.
- W2891837572 hasConceptScore W2891837572C2780035454 @default.
- W2891837572 hasConceptScore W2891837572C2781413609 @default.
- W2891837572 hasConceptScore W2891837572C2908647359 @default.
- W2891837572 hasConceptScore W2891837572C2994119904 @default.
- W2891837572 hasConceptScore W2891837572C33923547 @default.
- W2891837572 hasConceptScore W2891837572C41008148 @default.
- W2891837572 hasConceptScore W2891837572C557471498 @default.
- W2891837572 hasConceptScore W2891837572C60644358 @default.
- W2891837572 hasConceptScore W2891837572C70721500 @default.
- W2891837572 hasConceptScore W2891837572C71924100 @default.
- W2891837572 hasConceptScore W2891837572C86803240 @default.