Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891841130> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2891841130 endingPage "1200" @default.
- W2891841130 startingPage "1191" @default.
- W2891841130 abstract "Abstract This paper examines the impact of weather conditions on pipe failure in water distribution networks using artificial neural network (ANN) and evolutionary polynomial regression (EPR). A number of weather-related factors over 4 consecutive days are the input of the binary ANN model while the output is the occurrence or not of at least a failure during the following 2 days. The model is able to correctly distinguish the majority (87%) of the days with failure(s). The EPR is employed to predict the annual number of failures. Initially, the network is divided into six clusters based on pipe diameter and age. The last year of the monitoring period is used for testing while the remaining years since the beginning are retained for model development. An EPR model is developed for each cluster based on the relevant training data. The results indicate a strong relationship between the annual number of failures and frequency and intensity of low temperatures. The outputs from the EPR models are used to calculate the failures of the homogenous groups within each cluster proportionally to their length." @default.
- W2891841130 created "2018-09-27" @default.
- W2891841130 creator A5020577930 @default.
- W2891841130 creator A5052558681 @default.
- W2891841130 creator A5084709244 @default.
- W2891841130 date "2018-07-25" @default.
- W2891841130 modified "2023-10-17" @default.
- W2891841130 title "Pipeline failure prediction in water distribution networks using weather conditions as explanatory factors" @default.
- W2891841130 cites W1885676741 @default.
- W2891841130 cites W1979474788 @default.
- W2891841130 cites W1984040899 @default.
- W2891841130 cites W1998890126 @default.
- W2891841130 cites W2006952684 @default.
- W2891841130 cites W2015645304 @default.
- W2891841130 cites W2016436201 @default.
- W2891841130 cites W2019011281 @default.
- W2891841130 cites W2030221054 @default.
- W2891841130 cites W2042874645 @default.
- W2891841130 cites W2058998445 @default.
- W2891841130 cites W2072953516 @default.
- W2891841130 cites W2076577075 @default.
- W2891841130 cites W2078824956 @default.
- W2891841130 cites W2104960492 @default.
- W2891841130 cites W2124838890 @default.
- W2891841130 cites W2553722054 @default.
- W2891841130 cites W4243417134 @default.
- W2891841130 doi "https://doi.org/10.2166/hydro.2018.152" @default.
- W2891841130 hasPublicationYear "2018" @default.
- W2891841130 type Work @default.
- W2891841130 sameAs 2891841130 @default.
- W2891841130 citedByCount "17" @default.
- W2891841130 countsByYear W28918411302019 @default.
- W2891841130 countsByYear W28918411302020 @default.
- W2891841130 countsByYear W28918411302021 @default.
- W2891841130 countsByYear W28918411302022 @default.
- W2891841130 countsByYear W28918411302023 @default.
- W2891841130 crossrefType "journal-article" @default.
- W2891841130 hasAuthorship W2891841130A5020577930 @default.
- W2891841130 hasAuthorship W2891841130A5052558681 @default.
- W2891841130 hasAuthorship W2891841130A5084709244 @default.
- W2891841130 hasBestOaLocation W28918411301 @default.
- W2891841130 hasConcept C105795698 @default.
- W2891841130 hasConcept C110121322 @default.
- W2891841130 hasConcept C127413603 @default.
- W2891841130 hasConcept C134306372 @default.
- W2891841130 hasConcept C152877465 @default.
- W2891841130 hasConcept C154945302 @default.
- W2891841130 hasConcept C164866538 @default.
- W2891841130 hasConcept C199360897 @default.
- W2891841130 hasConcept C33923547 @default.
- W2891841130 hasConcept C39432304 @default.
- W2891841130 hasConcept C41008148 @default.
- W2891841130 hasConcept C43521106 @default.
- W2891841130 hasConcept C48921125 @default.
- W2891841130 hasConcept C50644808 @default.
- W2891841130 hasConcept C78519656 @default.
- W2891841130 hasConcept C83546350 @default.
- W2891841130 hasConceptScore W2891841130C105795698 @default.
- W2891841130 hasConceptScore W2891841130C110121322 @default.
- W2891841130 hasConceptScore W2891841130C127413603 @default.
- W2891841130 hasConceptScore W2891841130C134306372 @default.
- W2891841130 hasConceptScore W2891841130C152877465 @default.
- W2891841130 hasConceptScore W2891841130C154945302 @default.
- W2891841130 hasConceptScore W2891841130C164866538 @default.
- W2891841130 hasConceptScore W2891841130C199360897 @default.
- W2891841130 hasConceptScore W2891841130C33923547 @default.
- W2891841130 hasConceptScore W2891841130C39432304 @default.
- W2891841130 hasConceptScore W2891841130C41008148 @default.
- W2891841130 hasConceptScore W2891841130C43521106 @default.
- W2891841130 hasConceptScore W2891841130C48921125 @default.
- W2891841130 hasConceptScore W2891841130C50644808 @default.
- W2891841130 hasConceptScore W2891841130C78519656 @default.
- W2891841130 hasConceptScore W2891841130C83546350 @default.
- W2891841130 hasIssue "5" @default.
- W2891841130 hasLocation W28918411301 @default.
- W2891841130 hasLocation W28918411302 @default.
- W2891841130 hasOpenAccess W2891841130 @default.
- W2891841130 hasPrimaryLocation W28918411301 @default.
- W2891841130 hasRelatedWork W1555242842 @default.
- W2891841130 hasRelatedWork W2018697919 @default.
- W2891841130 hasRelatedWork W2062105804 @default.
- W2891841130 hasRelatedWork W2075210509 @default.
- W2891841130 hasRelatedWork W2375721435 @default.
- W2891841130 hasRelatedWork W247449116 @default.
- W2891841130 hasRelatedWork W3122861356 @default.
- W2891841130 hasRelatedWork W4249094282 @default.
- W2891841130 hasRelatedWork W4290879003 @default.
- W2891841130 hasRelatedWork W2738033194 @default.
- W2891841130 hasVolume "20" @default.
- W2891841130 isParatext "false" @default.
- W2891841130 isRetracted "false" @default.
- W2891841130 magId "2891841130" @default.
- W2891841130 workType "article" @default.