Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891859208> ?p ?o ?g. }
- W2891859208 endingPage "198" @default.
- W2891859208 startingPage "189" @default.
- W2891859208 abstract "Abstract Condition monitoring in wind turbines aims at detecting incipient faults at an early stage to improve maintenance. Artificial neural networks are a tool from machine learning that is frequently used for this purpose. Deep Learning is a machine learning paradigm based on deep neural networks that has shown great success at various applications over recent years. In this paper, we review unsupervised and supervised applications of artificial neural networks and in particular of Deep Learning to condition monitoring in wind turbines. We find that – despite a promising performance of supervised methods – unsupervised approaches are prevalent in the literature. To explain this phenomenon, we discuss a range of issues related to obtaining labelled data sets for supervised training, namely quality and access as well as labelling and class imbalance of operational data. Furthermore, we find that the application of Deep Learning to SCADA data is impeded by their relatively low dimensionality, and we suggest ways of working with higher-dimensional SCADA data." @default.
- W2891859208 created "2018-09-27" @default.
- W2891859208 creator A5032486535 @default.
- W2891859208 creator A5038402487 @default.
- W2891859208 date "2018-12-01" @default.
- W2891859208 modified "2023-10-17" @default.
- W2891859208 title "Deep Learning for fault detection in wind turbines" @default.
- W2891859208 cites W1498436455 @default.
- W2891859208 cites W1572191013 @default.
- W2891859208 cites W1866429230 @default.
- W2891859208 cites W1941659294 @default.
- W2891859208 cites W1964522863 @default.
- W2891859208 cites W1969067576 @default.
- W2891859208 cites W1973445088 @default.
- W2891859208 cites W1985255373 @default.
- W2891859208 cites W2004882387 @default.
- W2891859208 cites W2013936256 @default.
- W2891859208 cites W2015861736 @default.
- W2891859208 cites W2033708313 @default.
- W2891859208 cites W2037411704 @default.
- W2891859208 cites W2040661907 @default.
- W2891859208 cites W2040870580 @default.
- W2891859208 cites W2060512336 @default.
- W2891859208 cites W2064675550 @default.
- W2891859208 cites W2069143585 @default.
- W2891859208 cites W2076063813 @default.
- W2891859208 cites W2097138094 @default.
- W2891859208 cites W2097466372 @default.
- W2891859208 cites W2100495367 @default.
- W2891859208 cites W2112796928 @default.
- W2891859208 cites W2117130368 @default.
- W2891859208 cites W2120871928 @default.
- W2891859208 cites W2127064699 @default.
- W2891859208 cites W2127979711 @default.
- W2891859208 cites W2130663204 @default.
- W2891859208 cites W2136922672 @default.
- W2891859208 cites W2143612262 @default.
- W2891859208 cites W2155893237 @default.
- W2891859208 cites W2163922914 @default.
- W2891859208 cites W2202172816 @default.
- W2891859208 cites W2224690767 @default.
- W2891859208 cites W2232421923 @default.
- W2891859208 cites W2305950301 @default.
- W2891859208 cites W237147528 @default.
- W2891859208 cites W2517756674 @default.
- W2891859208 cites W2523553285 @default.
- W2891859208 cites W2584073777 @default.
- W2891859208 cites W2619304139 @default.
- W2891859208 cites W2761148314 @default.
- W2891859208 cites W2763220739 @default.
- W2891859208 cites W2770280398 @default.
- W2891859208 cites W2770867304 @default.
- W2891859208 cites W2802203651 @default.
- W2891859208 cites W2810036361 @default.
- W2891859208 cites W2919115771 @default.
- W2891859208 cites W2963674387 @default.
- W2891859208 cites W4231109964 @default.
- W2891859208 cites W48751330 @default.
- W2891859208 cites W94052953 @default.
- W2891859208 doi "https://doi.org/10.1016/j.rser.2018.09.012" @default.
- W2891859208 hasPublicationYear "2018" @default.
- W2891859208 type Work @default.
- W2891859208 sameAs 2891859208 @default.
- W2891859208 citedByCount "147" @default.
- W2891859208 countsByYear W28918592082019 @default.
- W2891859208 countsByYear W28918592082020 @default.
- W2891859208 countsByYear W28918592082021 @default.
- W2891859208 countsByYear W28918592082022 @default.
- W2891859208 countsByYear W28918592082023 @default.
- W2891859208 crossrefType "journal-article" @default.
- W2891859208 hasAuthorship W2891859208A5032486535 @default.
- W2891859208 hasAuthorship W2891859208A5038402487 @default.
- W2891859208 hasConcept C108583219 @default.
- W2891859208 hasConcept C119599485 @default.
- W2891859208 hasConcept C127313418 @default.
- W2891859208 hasConcept C127413603 @default.
- W2891859208 hasConcept C152745839 @default.
- W2891859208 hasConcept C154945302 @default.
- W2891859208 hasConcept C165205528 @default.
- W2891859208 hasConcept C171146098 @default.
- W2891859208 hasConcept C172707124 @default.
- W2891859208 hasConcept C175551986 @default.
- W2891859208 hasConcept C199104240 @default.
- W2891859208 hasConcept C39432304 @default.
- W2891859208 hasConcept C41008148 @default.
- W2891859208 hasConcept C78600449 @default.
- W2891859208 hasConceptScore W2891859208C108583219 @default.
- W2891859208 hasConceptScore W2891859208C119599485 @default.
- W2891859208 hasConceptScore W2891859208C127313418 @default.
- W2891859208 hasConceptScore W2891859208C127413603 @default.
- W2891859208 hasConceptScore W2891859208C152745839 @default.
- W2891859208 hasConceptScore W2891859208C154945302 @default.
- W2891859208 hasConceptScore W2891859208C165205528 @default.
- W2891859208 hasConceptScore W2891859208C171146098 @default.
- W2891859208 hasConceptScore W2891859208C172707124 @default.
- W2891859208 hasConceptScore W2891859208C175551986 @default.
- W2891859208 hasConceptScore W2891859208C199104240 @default.
- W2891859208 hasConceptScore W2891859208C39432304 @default.