Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891881703> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2891881703 endingPage "529" @default.
- W2891881703 startingPage "520" @default.
- W2891881703 abstract "Abstract Hybrid optimization algorithms which combine Evolutionary Algorithms (EAs) and Gradient-Based (GB) methods o refine the most promising solutions, are valuable tools for use in engineering optimization. Several hybrid methods can be found in the literature; differences among them are associated with the criteria used to select individuals for refinement through the GB method and the feedback the EA gets from the latter. GB methods require the gradient of the objective functions with respect to the design variables. By employing the adjoint method in problems governed by partial differential equations, the cost of computing the gradient becomes independent of the number of design variables. For multi-objective optimization problems this paper is exclusively dealing with, the availability of the gradients of all objective functions is not enough. Hybrid algorithms require the computation of descent directions in the objective space capable of improving the current front of non-dominated solutions. Using the sum of weighted objectives as the new objective function is ineffective. In this paper, a method which refrains from using arbitrarily defined weights is proposed. The method is driven by data obtained from the Principal Component Analysis (PCA) of the objective function values of the elite individuals at each generation of the EA. The PCA, with computational cost that of the solution of an eigenproblem, identifies the direction in the objective space along which the current front of non-dominated solutions should be improved. This along with the gradients computed by the adjoint method are used by the GB method to refine selected individuals. The efficiency of the proposed hybrid algorithm is further improved by employing online trained surrogate models or metamodels and Kernel PCA within the EA-based search. The proposed method is demonstrated in aerodynamic shape optimization problems, using in-house Computational Fluid Dynamics software and its adjoint." @default.
- W2891881703 created "2018-09-27" @default.
- W2891881703 creator A5006707622 @default.
- W2891881703 creator A5013460848 @default.
- W2891881703 creator A5055420121 @default.
- W2891881703 creator A5065117051 @default.
- W2891881703 creator A5066397205 @default.
- W2891881703 date "2018-12-01" @default.
- W2891881703 modified "2023-09-26" @default.
- W2891881703 title "A PCA-assisted hybrid algorithm combining EAs and adjoint methods for CFD-based optimization" @default.
- W2891881703 cites W1969247681 @default.
- W2891881703 cites W1974961323 @default.
- W2891881703 cites W2008434012 @default.
- W2891881703 cites W2019437468 @default.
- W2891881703 cites W2043776993 @default.
- W2891881703 cites W2065080695 @default.
- W2891881703 cites W2066249175 @default.
- W2891881703 cites W2067023166 @default.
- W2891881703 cites W2070314567 @default.
- W2891881703 cites W2087594943 @default.
- W2891881703 cites W2091911904 @default.
- W2891881703 cites W2097034581 @default.
- W2891881703 cites W2100717205 @default.
- W2891881703 cites W2125899728 @default.
- W2891881703 cites W2126105956 @default.
- W2891881703 cites W2128728535 @default.
- W2891881703 cites W2166739626 @default.
- W2891881703 cites W2167891430 @default.
- W2891881703 cites W2587789556 @default.
- W2891881703 doi "https://doi.org/10.1016/j.asoc.2018.09.002" @default.
- W2891881703 hasPublicationYear "2018" @default.
- W2891881703 type Work @default.
- W2891881703 sameAs 2891881703 @default.
- W2891881703 citedByCount "12" @default.
- W2891881703 countsByYear W28918817032018 @default.
- W2891881703 countsByYear W28918817032019 @default.
- W2891881703 countsByYear W28918817032020 @default.
- W2891881703 countsByYear W28918817032021 @default.
- W2891881703 countsByYear W28918817032022 @default.
- W2891881703 countsByYear W28918817032023 @default.
- W2891881703 crossrefType "journal-article" @default.
- W2891881703 hasAuthorship W2891881703A5006707622 @default.
- W2891881703 hasAuthorship W2891881703A5013460848 @default.
- W2891881703 hasAuthorship W2891881703A5055420121 @default.
- W2891881703 hasAuthorship W2891881703A5065117051 @default.
- W2891881703 hasAuthorship W2891881703A5066397205 @default.
- W2891881703 hasConcept C11413529 @default.
- W2891881703 hasConcept C126255220 @default.
- W2891881703 hasConcept C127413603 @default.
- W2891881703 hasConcept C146978453 @default.
- W2891881703 hasConcept C1633027 @default.
- W2891881703 hasConcept C2987595161 @default.
- W2891881703 hasConcept C33923547 @default.
- W2891881703 hasConcept C41008148 @default.
- W2891881703 hasConceptScore W2891881703C11413529 @default.
- W2891881703 hasConceptScore W2891881703C126255220 @default.
- W2891881703 hasConceptScore W2891881703C127413603 @default.
- W2891881703 hasConceptScore W2891881703C146978453 @default.
- W2891881703 hasConceptScore W2891881703C1633027 @default.
- W2891881703 hasConceptScore W2891881703C2987595161 @default.
- W2891881703 hasConceptScore W2891881703C33923547 @default.
- W2891881703 hasConceptScore W2891881703C41008148 @default.
- W2891881703 hasLocation W28918817031 @default.
- W2891881703 hasOpenAccess W2891881703 @default.
- W2891881703 hasPrimaryLocation W28918817031 @default.
- W2891881703 hasRelatedWork W2325243670 @default.
- W2891881703 hasRelatedWork W2333698505 @default.
- W2891881703 hasRelatedWork W2351491280 @default.
- W2891881703 hasRelatedWork W2371447506 @default.
- W2891881703 hasRelatedWork W2386767533 @default.
- W2891881703 hasRelatedWork W2784342274 @default.
- W2891881703 hasRelatedWork W2965078190 @default.
- W2891881703 hasRelatedWork W303980170 @default.
- W2891881703 hasRelatedWork W4287863136 @default.
- W2891881703 hasRelatedWork W4312796479 @default.
- W2891881703 hasVolume "73" @default.
- W2891881703 isParatext "false" @default.
- W2891881703 isRetracted "false" @default.
- W2891881703 magId "2891881703" @default.
- W2891881703 workType "article" @default.