Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891893329> ?p ?o ?g. }
- W2891893329 endingPage "2185" @default.
- W2891893329 startingPage "2173" @default.
- W2891893329 abstract "In this paper, the new exact solutions for the (2 + 1) dimensional time fractional Zoomeron equation have been derived via two efficient analytical techniques, which are the extended exp(−Φ(ξ))-expansion technique and the novel exponential rational function technique. The fractional derivative is designated based on the conformable derivative sense. Consequently, many new closed form solutions of this equation are obtained including hyperbolic function solutions, trigonometric function solutions and exponential function solutions by using these techniques. The obtained results show that the applied methods are very effective, reliable and simple for solving other nonlinear fractional differential equations in mathematical physics and nonlinear optics." @default.
- W2891893329 created "2018-09-27" @default.
- W2891893329 creator A5009926019 @default.
- W2891893329 creator A5081121343 @default.
- W2891893329 date "2018-10-01" @default.
- W2891893329 modified "2023-10-17" @default.
- W2891893329 title "New analytical solutions of (2 + 1)-dimensional conformable time fractional Zoomeron equation via two distinct techniques" @default.
- W2891893329 cites W1965594496 @default.
- W2891893329 cites W1966553738 @default.
- W2891893329 cites W1971062640 @default.
- W2891893329 cites W1982110682 @default.
- W2891893329 cites W1983676812 @default.
- W2891893329 cites W2016479530 @default.
- W2891893329 cites W2021095734 @default.
- W2891893329 cites W2036791637 @default.
- W2891893329 cites W2045824411 @default.
- W2891893329 cites W2045849932 @default.
- W2891893329 cites W2063067239 @default.
- W2891893329 cites W2080931732 @default.
- W2891893329 cites W2086737536 @default.
- W2891893329 cites W2096416980 @default.
- W2891893329 cites W2146423481 @default.
- W2891893329 cites W2282843453 @default.
- W2891893329 cites W2319417348 @default.
- W2891893329 cites W2324048733 @default.
- W2891893329 cites W2345408625 @default.
- W2891893329 cites W2382938304 @default.
- W2891893329 cites W2426843400 @default.
- W2891893329 cites W2516665003 @default.
- W2891893329 cites W2523876810 @default.
- W2891893329 cites W2555458625 @default.
- W2891893329 cites W2562733869 @default.
- W2891893329 cites W2589834670 @default.
- W2891893329 cites W2590670682 @default.
- W2891893329 cites W2596372838 @default.
- W2891893329 cites W2621108207 @default.
- W2891893329 cites W2626032552 @default.
- W2891893329 cites W2734541271 @default.
- W2891893329 cites W2742721406 @default.
- W2891893329 cites W2748008518 @default.
- W2891893329 cites W2754992213 @default.
- W2891893329 cites W2762105382 @default.
- W2891893329 cites W2763401070 @default.
- W2891893329 cites W2767380292 @default.
- W2891893329 cites W2771210248 @default.
- W2891893329 cites W2773084900 @default.
- W2891893329 cites W2800467841 @default.
- W2891893329 cites W2807450315 @default.
- W2891893329 cites W2885819609 @default.
- W2891893329 cites W2886642959 @default.
- W2891893329 cites W2889233791 @default.
- W2891893329 cites W329752466 @default.
- W2891893329 cites W899357680 @default.
- W2891893329 doi "https://doi.org/10.1016/j.cjph.2018.09.013" @default.
- W2891893329 hasPublicationYear "2018" @default.
- W2891893329 type Work @default.
- W2891893329 sameAs 2891893329 @default.
- W2891893329 citedByCount "28" @default.
- W2891893329 countsByYear W28918933292019 @default.
- W2891893329 countsByYear W28918933292020 @default.
- W2891893329 countsByYear W28918933292021 @default.
- W2891893329 countsByYear W28918933292022 @default.
- W2891893329 countsByYear W28918933292023 @default.
- W2891893329 crossrefType "journal-article" @default.
- W2891893329 hasAuthorship W2891893329A5009926019 @default.
- W2891893329 hasAuthorship W2891893329A5081121343 @default.
- W2891893329 hasConcept C106159729 @default.
- W2891893329 hasConcept C111771559 @default.
- W2891893329 hasConcept C121332964 @default.
- W2891893329 hasConcept C134306372 @default.
- W2891893329 hasConcept C14036430 @default.
- W2891893329 hasConcept C151376022 @default.
- W2891893329 hasConcept C154249771 @default.
- W2891893329 hasConcept C158622935 @default.
- W2891893329 hasConcept C162324750 @default.
- W2891893329 hasConcept C178009071 @default.
- W2891893329 hasConcept C2524010 @default.
- W2891893329 hasConcept C28826006 @default.
- W2891893329 hasConcept C29001434 @default.
- W2891893329 hasConcept C33923547 @default.
- W2891893329 hasConcept C62520636 @default.
- W2891893329 hasConcept C75190567 @default.
- W2891893329 hasConcept C78458016 @default.
- W2891893329 hasConcept C86072612 @default.
- W2891893329 hasConcept C86803240 @default.
- W2891893329 hasConcept C92047909 @default.
- W2891893329 hasConcept C98724732 @default.
- W2891893329 hasConceptScore W2891893329C106159729 @default.
- W2891893329 hasConceptScore W2891893329C111771559 @default.
- W2891893329 hasConceptScore W2891893329C121332964 @default.
- W2891893329 hasConceptScore W2891893329C134306372 @default.
- W2891893329 hasConceptScore W2891893329C14036430 @default.
- W2891893329 hasConceptScore W2891893329C151376022 @default.
- W2891893329 hasConceptScore W2891893329C154249771 @default.
- W2891893329 hasConceptScore W2891893329C158622935 @default.
- W2891893329 hasConceptScore W2891893329C162324750 @default.
- W2891893329 hasConceptScore W2891893329C178009071 @default.
- W2891893329 hasConceptScore W2891893329C2524010 @default.