Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891898214> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2891898214 endingPage "339" @default.
- W2891898214 startingPage "329" @default.
- W2891898214 abstract "Since the variation pattern of load during holidays is different than that of non-holidays, forecasting holiday load is a challenging task. With a focus on this problem, we propose a learning framework based on weighted knowledge transfer for daily peak load forecasting during holidays. First, we select source cities which can provide extra hidden knowledge to improve the forecast accuracy of the load of the target city. Then, all the instances which are from source cities and the target city will be weighted and trained by the improved weighted transfer learning algorithm which is based on the TrAdaBoost algorithm and can decrease negative transfer. We evaluate our method with the classical support vector machine method and a method based on knowledge transfer on a real data set, which includes eleven cities from Guangdong province to illustrate the performance of the method. To solve the problem of limited historical holiday load data, we transfer the data from nearby cities based on the fact that nearby cities in Guangdong province have a similar economic development level and similar load variation pattern. The results of comparative experiments show that the forecasting framework proposed by this paper outperforms these methods in terms of mean absolute percent error and mean absolute scaled error." @default.
- W2891898214 created "2018-09-27" @default.
- W2891898214 creator A5030110245 @default.
- W2891898214 creator A5055170451 @default.
- W2891898214 creator A5090966377 @default.
- W2891898214 date "2018-09-04" @default.
- W2891898214 modified "2023-10-10" @default.
- W2891898214 title "A learning framework based on weighted knowledge transfer for holiday load forecasting" @default.
- W2891898214 cites W1628954589 @default.
- W2891898214 cites W1982169178 @default.
- W2891898214 cites W1985810808 @default.
- W2891898214 cites W1991274233 @default.
- W2891898214 cites W2008750647 @default.
- W2891898214 cites W2015799639 @default.
- W2891898214 cites W2027527070 @default.
- W2891898214 cites W2038594239 @default.
- W2891898214 cites W2062156713 @default.
- W2891898214 cites W2067847508 @default.
- W2891898214 cites W2083172453 @default.
- W2891898214 cites W2083477834 @default.
- W2891898214 cites W2089822378 @default.
- W2891898214 cites W2098207764 @default.
- W2891898214 cites W2122838776 @default.
- W2891898214 cites W2146097858 @default.
- W2891898214 cites W2150291692 @default.
- W2891898214 cites W2168138569 @default.
- W2891898214 cites W2200377847 @default.
- W2891898214 cites W2275088575 @default.
- W2891898214 cites W2615291466 @default.
- W2891898214 cites W2745913225 @default.
- W2891898214 cites W2764791077 @default.
- W2891898214 cites W2767074638 @default.
- W2891898214 cites W2785873084 @default.
- W2891898214 cites W2792412799 @default.
- W2891898214 cites W2081770709 @default.
- W2891898214 doi "https://doi.org/10.1007/s40565-018-0435-z" @default.
- W2891898214 hasPublicationYear "2018" @default.
- W2891898214 type Work @default.
- W2891898214 sameAs 2891898214 @default.
- W2891898214 citedByCount "25" @default.
- W2891898214 countsByYear W28918982142019 @default.
- W2891898214 countsByYear W28918982142020 @default.
- W2891898214 countsByYear W28918982142021 @default.
- W2891898214 countsByYear W28918982142022 @default.
- W2891898214 countsByYear W28918982142023 @default.
- W2891898214 crossrefType "journal-article" @default.
- W2891898214 hasAuthorship W2891898214A5030110245 @default.
- W2891898214 hasAuthorship W2891898214A5055170451 @default.
- W2891898214 hasAuthorship W2891898214A5090966377 @default.
- W2891898214 hasBestOaLocation W28918982141 @default.
- W2891898214 hasConcept C119857082 @default.
- W2891898214 hasConcept C127413603 @default.
- W2891898214 hasConcept C150899416 @default.
- W2891898214 hasConcept C154945302 @default.
- W2891898214 hasConcept C173608175 @default.
- W2891898214 hasConcept C2776175482 @default.
- W2891898214 hasConcept C2776960227 @default.
- W2891898214 hasConcept C41008148 @default.
- W2891898214 hasConcept C42475967 @default.
- W2891898214 hasConcept C56739046 @default.
- W2891898214 hasConceptScore W2891898214C119857082 @default.
- W2891898214 hasConceptScore W2891898214C127413603 @default.
- W2891898214 hasConceptScore W2891898214C150899416 @default.
- W2891898214 hasConceptScore W2891898214C154945302 @default.
- W2891898214 hasConceptScore W2891898214C173608175 @default.
- W2891898214 hasConceptScore W2891898214C2776175482 @default.
- W2891898214 hasConceptScore W2891898214C2776960227 @default.
- W2891898214 hasConceptScore W2891898214C41008148 @default.
- W2891898214 hasConceptScore W2891898214C42475967 @default.
- W2891898214 hasConceptScore W2891898214C56739046 @default.
- W2891898214 hasFunder F4320321001 @default.
- W2891898214 hasIssue "2" @default.
- W2891898214 hasLocation W28918982141 @default.
- W2891898214 hasOpenAccess W2891898214 @default.
- W2891898214 hasPrimaryLocation W28918982141 @default.
- W2891898214 hasRelatedWork W2960456850 @default.
- W2891898214 hasRelatedWork W3021430260 @default.
- W2891898214 hasRelatedWork W3133293092 @default.
- W2891898214 hasRelatedWork W3192503984 @default.
- W2891898214 hasRelatedWork W4213299466 @default.
- W2891898214 hasRelatedWork W4225294552 @default.
- W2891898214 hasRelatedWork W4281382123 @default.
- W2891898214 hasRelatedWork W4281645081 @default.
- W2891898214 hasRelatedWork W4294306704 @default.
- W2891898214 hasRelatedWork W4308262314 @default.
- W2891898214 hasVolume "7" @default.
- W2891898214 isParatext "false" @default.
- W2891898214 isRetracted "false" @default.
- W2891898214 magId "2891898214" @default.
- W2891898214 workType "article" @default.