Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891915458> ?p ?o ?g. }
- W2891915458 endingPage "3879" @default.
- W2891915458 startingPage "3863" @default.
- W2891915458 abstract "Hyperspectral images (HSIs), during the acquisition process, are often corrupted by a mixture of several types of noises, including Gaussian noise, impulsive noise, dead lines, stripes, and many others. These mixed noises not only severely degrade the visual quality of HSIs, but also limit the related subsequent applications. In this paper, we propose a novel robust principal component analysis approach for mixed noise removal by fully identifying the intrinsic structures of the mixed noise and clean HSI. Specifically, for the noise modeling, considering that the mixed noise consists of the dense Gaussian noise and sparse noise, and even the noise densities in different bands are disparate, we introduce a series of Gaussian–Laplace mixture distributions with the band-adaptive scale parameters to estimate the mixed noise. For the image modeling, since there exist rich correlations among the spectral bands and many self-similarities over the image blocks, we initialize a spatial–spectral low-rank characterization of the image. Furthermore, we impose the anisotropic spatial–spectral total variation regularization on the image to enhance the robustness of our approach. Then, by combining the expectation–maximization algorithm and the alternative direction method of multiplier, we develop an efficient algorithm for the resulting optimization problem. Extensive experimental results on the simulated and real datasets demonstrate that the proposed method is superior over the existing state-of-the-art ones." @default.
- W2891915458 created "2018-09-27" @default.
- W2891915458 creator A5013885739 @default.
- W2891915458 creator A5016222288 @default.
- W2891915458 creator A5018676117 @default.
- W2891915458 creator A5020732024 @default.
- W2891915458 creator A5078681670 @default.
- W2891915458 date "2018-10-01" @default.
- W2891915458 modified "2023-10-10" @default.
- W2891915458 title "A Robust PCA Approach With Noise Structure Learning and Spatial–Spectral Low-Rank Modeling for Hyperspectral Image Restoration" @default.
- W2891915458 cites W1944540851 @default.
- W2891915458 cites W1969352102 @default.
- W2891915458 cites W1970099214 @default.
- W2891915458 cites W1974438823 @default.
- W2891915458 cites W1977066218 @default.
- W2891915458 cites W1978749115 @default.
- W2891915458 cites W1985242206 @default.
- W2891915458 cites W1994040806 @default.
- W2891915458 cites W2018990310 @default.
- W2891915458 cites W2039596145 @default.
- W2891915458 cites W2043571470 @default.
- W2891915458 cites W2053514113 @default.
- W2891915458 cites W2056370875 @default.
- W2891915458 cites W2072026894 @default.
- W2891915458 cites W2096214786 @default.
- W2891915458 cites W2116861100 @default.
- W2891915458 cites W2129891925 @default.
- W2891915458 cites W2136625467 @default.
- W2891915458 cites W2140702875 @default.
- W2891915458 cites W2144348684 @default.
- W2891915458 cites W2145962650 @default.
- W2891915458 cites W2149414429 @default.
- W2891915458 cites W2153663612 @default.
- W2891915458 cites W2160484748 @default.
- W2891915458 cites W2162276208 @default.
- W2891915458 cites W2163886442 @default.
- W2891915458 cites W2171520281 @default.
- W2891915458 cites W2327302159 @default.
- W2891915458 cites W2336406062 @default.
- W2891915458 cites W2414009677 @default.
- W2891915458 cites W2464748116 @default.
- W2891915458 cites W2480706550 @default.
- W2891915458 cites W2585357012 @default.
- W2891915458 cites W2735711969 @default.
- W2891915458 cites W2747865121 @default.
- W2891915458 cites W2964179170 @default.
- W2891915458 cites W3104436273 @default.
- W2891915458 cites W3104624268 @default.
- W2891915458 cites W4292363360 @default.
- W2891915458 doi "https://doi.org/10.1109/jstars.2018.2866815" @default.
- W2891915458 hasPublicationYear "2018" @default.
- W2891915458 type Work @default.
- W2891915458 sameAs 2891915458 @default.
- W2891915458 citedByCount "21" @default.
- W2891915458 countsByYear W28919154582018 @default.
- W2891915458 countsByYear W28919154582019 @default.
- W2891915458 countsByYear W28919154582020 @default.
- W2891915458 countsByYear W28919154582021 @default.
- W2891915458 countsByYear W28919154582022 @default.
- W2891915458 countsByYear W28919154582023 @default.
- W2891915458 crossrefType "journal-article" @default.
- W2891915458 hasAuthorship W2891915458A5013885739 @default.
- W2891915458 hasAuthorship W2891915458A5016222288 @default.
- W2891915458 hasAuthorship W2891915458A5018676117 @default.
- W2891915458 hasAuthorship W2891915458A5020732024 @default.
- W2891915458 hasAuthorship W2891915458A5078681670 @default.
- W2891915458 hasConcept C106430172 @default.
- W2891915458 hasConcept C114614502 @default.
- W2891915458 hasConcept C115961682 @default.
- W2891915458 hasConcept C153180895 @default.
- W2891915458 hasConcept C154945302 @default.
- W2891915458 hasConcept C159078339 @default.
- W2891915458 hasConcept C164226766 @default.
- W2891915458 hasConcept C31972630 @default.
- W2891915458 hasConcept C33923547 @default.
- W2891915458 hasConcept C41008148 @default.
- W2891915458 hasConcept C78660771 @default.
- W2891915458 hasConcept C9417928 @default.
- W2891915458 hasConcept C99498987 @default.
- W2891915458 hasConceptScore W2891915458C106430172 @default.
- W2891915458 hasConceptScore W2891915458C114614502 @default.
- W2891915458 hasConceptScore W2891915458C115961682 @default.
- W2891915458 hasConceptScore W2891915458C153180895 @default.
- W2891915458 hasConceptScore W2891915458C154945302 @default.
- W2891915458 hasConceptScore W2891915458C159078339 @default.
- W2891915458 hasConceptScore W2891915458C164226766 @default.
- W2891915458 hasConceptScore W2891915458C31972630 @default.
- W2891915458 hasConceptScore W2891915458C33923547 @default.
- W2891915458 hasConceptScore W2891915458C41008148 @default.
- W2891915458 hasConceptScore W2891915458C78660771 @default.
- W2891915458 hasConceptScore W2891915458C9417928 @default.
- W2891915458 hasConceptScore W2891915458C99498987 @default.
- W2891915458 hasIssue "10" @default.
- W2891915458 hasLocation W28919154581 @default.
- W2891915458 hasOpenAccess W2891915458 @default.
- W2891915458 hasPrimaryLocation W28919154581 @default.
- W2891915458 hasRelatedWork W1533292911 @default.
- W2891915458 hasRelatedWork W2076843379 @default.